import gradio as gr from huggingface_hub import InferenceClient import os """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ import requests from openai import OpenAI clients = {'3B': [OpenAI(api_key='123', base_url=os.getenv('MODEL_NAME_OR_PATH_3B')), 'RefalMachine/ruadapt_qwen2.5_3B_ext_u48_instruct'], '7B (work in progress)': [OpenAI(api_key='123', base_url=os.getenv('MODEL_NAME_OR_PATH_7B')), 'RefalMachine/ruadapt_qwen2.5_7B_ext_u48_instruct']} #client = InferenceClient(os.getenv('MODEL_NAME_OR_PATH')) def respond( model_name, message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, repetition_penalty ): messages = [] if len(system_message.strip()) > 0: messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" res = clients[model_name][0].chat.completions.create( model=clients[model_name][1], messages=messages, temperature=temperature, top_p=top_p, max_tokens=max_tokens, stream=True, extra_body={ "repetition_penalty": repetition_penalty, "add_generation_prompt": True, } ) for message in res: token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ options = ["3B", "7B (work in progress)"] demo = gr.ChatInterface( respond, additional_inputs=[ gr.Radio(choices=options, label="Model:", value=options[0]) gr.Textbox(value="", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.3, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), gr.Slider(minimum=0.9, maximum=1.2, value=1.0, step=0.05, label="repetition_penalty"), ], ) if __name__ == "__main__": #print(requests.get(os.getenv('MODEL_NAME_OR_PATH')[:-3] + '/docs')) demo.launch(share=True)