Reem333 commited on
Commit
231a475
·
verified ·
1 Parent(s): c80f8a3

Delete ‏‏app.py

Browse files
Files changed (1) hide show
  1. ‏‏app.py +0 -126
‏‏app.py DELETED
@@ -1,126 +0,0 @@
1
- import streamlit as st
2
- import torch
3
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
- import fitz
5
- import os
6
-
7
- # Load Longformer model and tokenizer
8
- longformer_model = AutoModelForSequenceClassification.from_pretrained("Reem333/Longformer")
9
- longformer_tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
10
-
11
- # Load BERT model and tokenizer
12
- bert_model = AutoModelForSequenceClassification.from_pretrained("Reem333/BERT")
13
- bert_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
14
-
15
- # Function to extract text from PDF
16
- def extract_text_from_pdf(file_path):
17
- text = ''
18
- try:
19
- with fitz.open(file_path) as pdf_document:
20
- for page_number in range(pdf_document.page_count):
21
- page = pdf_document.load_page(page_number)
22
- text += page.get_text()
23
- except Exception as e:
24
- st.error(f"Error reading PDF file: {e}")
25
- return text
26
-
27
- # Function to predict the class of the text using a specified model and tokenizer
28
- def predict_class(text, model, tokenizer):
29
- try:
30
- max_length = 4096 if "longformer" in str(model) else 512
31
- truncated_text = text[:max_length]
32
-
33
- inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
34
- with torch.no_grad():
35
- outputs = model(**inputs)
36
- logits = outputs.logits
37
- predicted_class = torch.argmax(logits, dim=1).item()
38
- return predicted_class
39
- except Exception as e:
40
- st.error(f"Error during prediction: {e}")
41
- return None
42
-
43
- # Setup for uploaded files directory
44
- uploaded_files_dir = "uploaded_files"
45
- os.makedirs(uploaded_files_dir, exist_ok=True)
46
-
47
- # Color mapping for class levels
48
- class_colors = {
49
- 0: "#d62728", # Level 1
50
- 1: "#ff7f0e", # Level 2
51
- 2: "#2ca02c", # Level 3
52
- 3: "#1f77b4" # Level 4
53
- }
54
-
55
- # Streamlit page configuration
56
- st.set_page_config(page_title="Paper Citation Classifier", page_icon="logo.png")
57
-
58
- # Sidebar content
59
- with st.sidebar:
60
- st.image("logo.png", width=70)
61
- st.markdown('<div style="position: absolute; left: 5px;"></div>', unsafe_allow_html=True)
62
- st.markdown("# Paper Citation Classifier")
63
- st.markdown("---")
64
- st.markdown("## About")
65
- st.markdown('''
66
- This tool classifies paper citations into different levels based on their number of citations.
67
- Powered by Fine-Tuned [Longformer model](https://huggingface.co/REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier) and BERT model with custom data.
68
- ''')
69
- st.markdown("### Class Levels:")
70
- st.markdown("- Level 1: Highly cited papers")
71
- st.markdown("- Level 2: Average cited papers")
72
- st.markdown("- Level 3: More cited papers")
73
- st.markdown("- Level 4: Low cited papers")
74
- st.markdown("---")
75
- st.markdown('Tabuk University')
76
-
77
- st.title("Check Your Paper Now!")
78
-
79
- # Main content
80
- option = st.radio("Select input type:", ("Text", "PDF"))
81
-
82
- if option == "Text":
83
- title_input = st.text_area("Enter Title:")
84
- abstract_input = st.text_area("Enter Abstract:")
85
- full_text_input = st.text_area("Enter Full Text:")
86
- affiliations_input = st.text_area("Enter Affiliations:")
87
- keywords_input = st.text_area("Enter Keywords:")
88
- options = ['cs', "AI"]
89
-
90
- selected_category = st.selectbox("Select WoS categories:", options)
91
- if selected_category == "Other":
92
- custom_category = st.text_input("Enter custom category:")
93
- selected_category = custom_category if custom_category else "Other"
94
-
95
- combined_text = f"{title_input} [SEP] {keywords_input} [SEP] {abstract_input} [SEP] {selected_category} [SEP] {affiliations_input} [SEP] {full_text_input}"
96
-
97
- if st.button("Predict"):
98
- if not any([title_input, abstract_input, keywords_input, full_text_input, affiliations_input]):
99
- st.warning("Please enter paper text.")
100
- else:
101
- with st.spinner("Predicting..."):
102
- longformer_class = predict_class(combined_text, longformer_model, longformer_tokenizer)
103
- bert_class = predict_class(combined_text, bert_model, bert_tokenizer)
104
- if longformer_class is not None and bert_class is not None:
105
- class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
106
-
107
- st.text("Longformer Predicted Class:")
108
- for i, label in enumerate(class_labels):
109
- if i == longformer_class:
110
- st.markdown(
111
- f'<div style="background-color: {class_colors[longformer_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
112
- unsafe_allow_html=True
113
- )
114
- else:
115
- st.text(label)
116
-
117
- st.text("BERT Predicted Class:")
118
- for i, label in enumerate(class_labels):
119
- if i == bert_class:
120
- st.markdown(
121
- f'<div style="background-color: {class_colors[bert_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
122
- unsafe_allow_html=True
123
- )
124
- else:
125
- st.text(label)
126
-