Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,133 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import torch
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
-
import fitz
|
| 5 |
-
import os
|
| 6 |
-
|
| 7 |
-
model = AutoModelForSequenceClassification.from_pretrained("Reem333/Citaion-Classifier")
|
| 8 |
-
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
|
| 9 |
-
|
| 10 |
-
def extract_text_from_pdf(file_path):
|
| 11 |
-
text = ''
|
| 12 |
-
with fitz.open(file_path) as pdf_document:
|
| 13 |
-
for page_number in range(pdf_document.page_count):
|
| 14 |
-
page = pdf_document.load_page(page_number)
|
| 15 |
-
text += page.get_text()
|
| 16 |
-
return text
|
| 17 |
-
|
| 18 |
-
def predict_class(text):
|
| 19 |
-
try:
|
| 20 |
-
max_length = 4096
|
| 21 |
-
truncated_text = text[:max_length]
|
| 22 |
-
|
| 23 |
-
inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
|
| 24 |
-
with torch.no_grad():
|
| 25 |
-
outputs = model(**inputs)
|
| 26 |
-
logits = outputs.logits
|
| 27 |
-
predicted_class = torch.argmax(logits, dim=1).item()
|
| 28 |
-
return predicted_class
|
| 29 |
-
except Exception as e:
|
| 30 |
-
st.error(f"Error during prediction: {e}")
|
| 31 |
-
return None
|
| 32 |
-
|
| 33 |
-
uploaded_files_dir = "uploaded_files"
|
| 34 |
-
os.makedirs(uploaded_files_dir, exist_ok=True)
|
| 35 |
-
|
| 36 |
-
class_colors = {
|
| 37 |
-
0: "#d62728", # Level 1
|
| 38 |
-
1: "#ff7f0e", # Level 2
|
| 39 |
-
2: "#2ca02c", # Level 3
|
| 40 |
-
3: "#1f77b4" # Level 4
|
| 41 |
-
}
|
| 42 |
-
|
| 43 |
-
st.set_page_config(page_title="Paper Citation Classifier", page_icon="logo.png")
|
| 44 |
-
|
| 45 |
-
with st.sidebar:
|
| 46 |
-
st.image("logo.png", width=70)
|
| 47 |
-
st.markdown('<div style="position: absolute; left: 5px;"></div>', unsafe_allow_html=True)
|
| 48 |
-
|
| 49 |
-
st.markdown("# Paper Citation Classifier")
|
| 50 |
-
st.markdown("---")
|
| 51 |
-
st.markdown("## About")
|
| 52 |
-
st.markdown('''
|
| 53 |
-
This is a tool to classify paper citations into different levels based on their number of citations.
|
| 54 |
-
Powered by Fine-Tuned [Longformer model](https://huggingface.co/Reem333/Citaion-Classifier) with custom data.
|
| 55 |
-
''')
|
| 56 |
-
st.markdown("### Class Levels:")
|
| 57 |
-
st.markdown("- Level 1: Highly cited papers")
|
| 58 |
-
st.markdown("- Level 2: Average cited papers")
|
| 59 |
-
st.markdown("- Level 3: More cited papers")
|
| 60 |
-
st.markdown("- Level 4: Low cited papers")
|
| 61 |
-
st.markdown("---")
|
| 62 |
-
#st.markdown('Tabuk University')
|
| 63 |
-
|
| 64 |
-
st.title("Check Your Paper Now!")
|
| 65 |
-
|
| 66 |
-
option = st.radio("Select input type:", ("Text", "PDF"))
|
| 67 |
-
|
| 68 |
-
if option == "Text":
|
| 69 |
-
title_input = st.text_area("Enter Title:")
|
| 70 |
-
abstract_input = st.text_area("Enter Abstract:")
|
| 71 |
-
full_text_input = st.text_area("Enter Full Text:")
|
| 72 |
-
affiliations_input = st.text_area("Enter Affiliations:")
|
| 73 |
-
keywords_input = st.text_area("Enter Keywords:")
|
| 74 |
-
options=["Nursing", "Physics", "Maths", "Chemical", "Nuclear", "Engineering" ,"Other"]
|
| 75 |
-
|
| 76 |
-
selected_category = st.selectbox("Select WoS categories:", options, index= None)
|
| 77 |
-
if selected_category == "Other":
|
| 78 |
-
custom_category = st.text_input("Enter custom category:")
|
| 79 |
-
selected_category = custom_category if custom_category else "Other"
|
| 80 |
-
|
| 81 |
-
combined_text = f"{title_input} [SEP] {keywords_input} [SEP] {abstract_input} [SEP] {selected_category} [SEP] {affiliations_input} [SEP] {' [SEP] '.join(full_text_input)}"
|
| 82 |
-
|
| 83 |
-
if st.button("Predict"):
|
| 84 |
-
if not any([title_input, abstract_input,keywords_input, full_text_input, affiliations_input]):
|
| 85 |
-
st.warning("Please enter paper text.")
|
| 86 |
-
else:
|
| 87 |
-
with st.spinner("Predicting..."):
|
| 88 |
-
predicted_class = predict_class(combined_text)
|
| 89 |
-
if predicted_class is not None:
|
| 90 |
-
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
|
| 91 |
-
|
| 92 |
-
st.text("Predicted Class:")
|
| 93 |
-
for i, label in enumerate(class_labels):
|
| 94 |
-
if i == predicted_class:
|
| 95 |
-
st.markdown(
|
| 96 |
-
f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
|
| 97 |
-
unsafe_allow_html=True
|
| 98 |
-
)
|
| 99 |
-
else:
|
| 100 |
-
st.text(label)
|
| 101 |
-
|
| 102 |
-
elif option == "PDF":
|
| 103 |
-
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
| 104 |
-
|
| 105 |
-
if uploaded_file is not None:
|
| 106 |
-
with st.spinner("Processing PDF..."):
|
| 107 |
-
file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
|
| 108 |
-
with open(file_path, "wb") as f:
|
| 109 |
-
f.write(uploaded_file.getbuffer())
|
| 110 |
-
st.success("File uploaded successfully.")
|
| 111 |
-
st.text(f"File Path: {file_path}")
|
| 112 |
-
|
| 113 |
-
file_text = extract_text_from_pdf(file_path)
|
| 114 |
-
st.text("Extracted Text:")
|
| 115 |
-
st.text(file_text)
|
| 116 |
-
|
| 117 |
-
if st.button("Predict from PDF Text"):
|
| 118 |
-
if not file_text.strip():
|
| 119 |
-
st.warning("Please upload a PDF with text content.")
|
| 120 |
-
else:
|
| 121 |
-
with st.spinner("Predicting..."):
|
| 122 |
-
predicted_class = predict_class(file_text)
|
| 123 |
-
if predicted_class is not None:
|
| 124 |
-
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
|
| 125 |
-
st.text("**Predicted Class:**")
|
| 126 |
-
for i, label in enumerate(class_labels):
|
| 127 |
-
if i == predicted_class:
|
| 128 |
-
st.markdown(
|
| 129 |
-
f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
|
| 130 |
-
unsafe_allow_html=True
|
| 131 |
-
)
|
| 132 |
-
else:
|
| 133 |
-
st.text(label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|