Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image, ImageDraw | |
| import torch | |
| import torchvision.transforms as transforms | |
| import timm | |
| # URL for the Hugging Face checkpoint | |
| CHECKPOINT_URL = "https://huggingface.co/ReefNet/beit_global/resolve/main/checkpoint-60.pth" | |
| # Class labels | |
| all_classes = [ | |
| 'Acanthastrea', 'Acropora', 'Agaricia', 'Alveopora', 'Astrea', 'Astreopora', | |
| 'Caulastraea', 'Coeloseris', 'Colpophyllia', 'Coscinaraea', 'Ctenactis', | |
| 'Cycloseris', 'Cyphastrea', 'Dendrogyra', 'Dichocoenia', 'Diploastrea', | |
| 'Diploria', 'Dipsastraea', 'Echinophyllia', 'Echinopora', 'Euphyllia', | |
| 'Eusmilia', 'Favia', 'Favites', 'Fungia', 'Galaxea', 'Gardineroseris', | |
| 'Goniastrea', 'Goniopora', 'Halomitra', 'Herpolitha', 'Hydnophora', | |
| 'Isophyllia', 'Isopora', 'Leptastrea', 'Leptoria', 'Leptoseris', | |
| 'Lithophyllon', 'Lobactis', 'Lobophyllia', 'Madracis', 'Meandrina', 'Merulina', | |
| 'Montastraea', 'Montipora', 'Mussa', 'Mussismilia', 'Mycedium', 'Orbicella', | |
| 'Oulastrea', 'Oulophyllia', 'Oxypora', 'Pachyseris', 'Pavona', 'Pectinia', | |
| 'Physogyra', 'Platygyra', 'Plerogyra', 'Plesiastrea', 'Pocillopora', | |
| 'Podabacia', 'Porites', 'Psammocora', 'Pseudodiploria', 'Sandalolitha', | |
| 'Scolymia', 'Seriatopora', 'Siderastrea', 'Stephanocoenia', 'Stylocoeniella', | |
| 'Stylophora', 'Tubastraea', 'Turbinaria' | |
| ] | |
| # Function to load the BeIT model | |
| def load_model(model_name): | |
| print(f"Loading {model_name} model...") | |
| if model_name == 'beit': | |
| args = type('', (), {})() | |
| args.model = 'beitv2_large_patch16_224.in1k_ft_in22k_in1k' | |
| args.nb_classes = len(all_classes) | |
| args.drop_path = 0.1 | |
| # Create model | |
| model = timm.create_model( | |
| args.model, | |
| pretrained=False, | |
| num_classes=args.nb_classes, | |
| drop_path_rate=args.drop_path, | |
| use_rel_pos_bias=True, | |
| use_abs_pos_emb=True, | |
| ) | |
| # Load checkpoint from Hugging Face | |
| checkpoint = torch.hub.load_state_dict_from_url(CHECKPOINT_URL, map_location="cpu") | |
| state_dict = checkpoint.get('model', checkpoint) | |
| # Filter state dict | |
| filtered_state_dict = {k: v for k, v in state_dict.items() if "relative_position_index" not in k} | |
| model.load_state_dict(filtered_state_dict, strict=False) | |
| else: | |
| raise ValueError(f"Model {model_name} not implemented!") | |
| # Move model to CUDA if available | |
| model.eval() | |
| if torch.cuda.is_available(): | |
| model.cuda() | |
| return model | |
| # Preprocessing transforms | |
| preprocess = transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| ]) | |
| # Initialize selected model | |
| selected_model_name = 'beit' | |
| model = load_model(selected_model_name) | |
| def predict_label(image): | |
| """Predict the label for the given image.""" | |
| # Ensure the image is a PIL Image | |
| if isinstance(image, np.ndarray): | |
| image = Image.fromarray(image) | |
| elif not isinstance(image, Image.Image): | |
| raise TypeError(f"Unexpected type {type(image)}, expected PIL.Image or numpy.ndarray.") | |
| input_tensor = preprocess(image).unsqueeze(0) | |
| if torch.cuda.is_available(): | |
| input_tensor = input_tensor.cuda() | |
| with torch.no_grad(): | |
| outputs = model(input_tensor) | |
| predicted_class = torch.argmax(outputs, dim=1).item() | |
| return all_classes[predicted_class] | |
| # Function to draw a rectangle on the image | |
| def draw_rectangle(image, x, y, size=224): | |
| image_pil = image.copy() | |
| draw = ImageDraw.Draw(image_pil) | |
| draw.rectangle([x, y, x + size, y + size], outline="red", width=3) | |
| return image_pil | |
| # Crop a region of interest | |
| def crop_image(image, x, y, size=224): | |
| image_np = np.array(image) | |
| h, w, _ = image_np.shape | |
| x = min(max(x, 0), w - size) | |
| y = min(max(y, 0), h - size) | |
| cropped = image_np[y:y+size, x:x+size] | |
| return Image.fromarray(cropped) | |
| # Gradio UI | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Coral Classification with BeIT Model") | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input = gr.Image(type="pil", label="Upload Image", interactive=True) | |
| x_slider = gr.Slider(0, 1000, step=1, value=0, label="X Coordinate") | |
| y_slider = gr.Slider(0, 1000, step=1, value=0, label="Y Coordinate") | |
| with gr.Column(): | |
| interactive_image = gr.Image(label="Interactive Image") | |
| cropped_image = gr.Image(label="Cropped Patch") | |
| label_output = gr.Textbox(label="Predicted Label") | |
| # Interactions | |
| def update_selection(image, x, y): | |
| overlay_image = draw_rectangle(image, x, y) | |
| cropped = crop_image(image, x, y) | |
| return overlay_image, cropped | |
| def predict_from_cropped(cropped): | |
| return predict_label(cropped) | |
| crop_button = gr.Button("Crop") | |
| crop_button.click(fn=update_selection, inputs=[image_input, x_slider, y_slider], outputs=[interactive_image, cropped_image]) | |
| predict_button = gr.Button("Predict") | |
| predict_button.click(fn=predict_from_cropped, inputs=cropped_image, outputs=label_output) | |
| def update_sliders(image): | |
| if image: | |
| width, height = image.size | |
| return gr.update(maximum=width - 224), gr.update(maximum=height - 224) | |
| return gr.update(), gr.update() | |
| image_input.change(fn=update_sliders, inputs=image_input, outputs=[x_slider, y_slider]) | |
| demo.launch(server_name="0.0.0.0", server_port=7860) | |