reefnet_demo_1.0 / app _bk.py
yahiab
Track coral images with Git LFS
fe0c1e0
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torch
import torchvision.transforms as transforms
import timm
# URL for the Hugging Face checkpoint
CHECKPOINT_URL = "https://huggingface.co/ReefNet/beit_global/resolve/main/checkpoint-60.pth"
# Class labels
all_classes = [
'Acanthastrea', 'Acropora', 'Agaricia', 'Alveopora', 'Astrea', 'Astreopora',
'Caulastraea', 'Coeloseris', 'Colpophyllia', 'Coscinaraea', 'Ctenactis',
'Cycloseris', 'Cyphastrea', 'Dendrogyra', 'Dichocoenia', 'Diploastrea',
'Diploria', 'Dipsastraea', 'Echinophyllia', 'Echinopora', 'Euphyllia',
'Eusmilia', 'Favia', 'Favites', 'Fungia', 'Galaxea', 'Gardineroseris',
'Goniastrea', 'Goniopora', 'Halomitra', 'Herpolitha', 'Hydnophora',
'Isophyllia', 'Isopora', 'Leptastrea', 'Leptoria', 'Leptoseris',
'Lithophyllon', 'Lobactis', 'Lobophyllia', 'Madracis', 'Meandrina', 'Merulina',
'Montastraea', 'Montipora', 'Mussa', 'Mussismilia', 'Mycedium', 'Orbicella',
'Oulastrea', 'Oulophyllia', 'Oxypora', 'Pachyseris', 'Pavona', 'Pectinia',
'Physogyra', 'Platygyra', 'Plerogyra', 'Plesiastrea', 'Pocillopora',
'Podabacia', 'Porites', 'Psammocora', 'Pseudodiploria', 'Sandalolitha',
'Scolymia', 'Seriatopora', 'Siderastrea', 'Stephanocoenia', 'Stylocoeniella',
'Stylophora', 'Tubastraea', 'Turbinaria'
]
# Function to load the BeIT model
def load_model(model_name):
print(f"Loading {model_name} model...")
if model_name == 'beit':
args = type('', (), {})()
args.model = 'beitv2_large_patch16_224.in1k_ft_in22k_in1k'
args.nb_classes = len(all_classes)
args.drop_path = 0.1
# Create model
model = timm.create_model(
args.model,
pretrained=False,
num_classes=args.nb_classes,
drop_path_rate=args.drop_path,
use_rel_pos_bias=True,
use_abs_pos_emb=True,
)
# Load checkpoint from Hugging Face
checkpoint = torch.hub.load_state_dict_from_url(CHECKPOINT_URL, map_location="cpu")
state_dict = checkpoint.get('model', checkpoint)
# Filter state dict
filtered_state_dict = {k: v for k, v in state_dict.items() if "relative_position_index" not in k}
model.load_state_dict(filtered_state_dict, strict=False)
else:
raise ValueError(f"Model {model_name} not implemented!")
# Move model to CUDA if available
model.eval()
if torch.cuda.is_available():
model.cuda()
return model
# Preprocessing transforms
preprocess = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Initialize selected model
selected_model_name = 'beit'
model = load_model(selected_model_name)
def predict_label(image):
"""Predict the label for the given image."""
# Ensure the image is a PIL Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
raise TypeError(f"Unexpected type {type(image)}, expected PIL.Image or numpy.ndarray.")
input_tensor = preprocess(image).unsqueeze(0)
if torch.cuda.is_available():
input_tensor = input_tensor.cuda()
with torch.no_grad():
outputs = model(input_tensor)
predicted_class = torch.argmax(outputs, dim=1).item()
return all_classes[predicted_class]
# Function to draw a rectangle on the image
def draw_rectangle(image, x, y, size=224):
image_pil = image.copy()
draw = ImageDraw.Draw(image_pil)
draw.rectangle([x, y, x + size, y + size], outline="red", width=3)
return image_pil
# Crop a region of interest
def crop_image(image, x, y, size=224):
image_np = np.array(image)
h, w, _ = image_np.shape
x = min(max(x, 0), w - size)
y = min(max(y, 0), h - size)
cropped = image_np[y:y+size, x:x+size]
return Image.fromarray(cropped)
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## Coral Classification with BeIT Model")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload Image", interactive=True)
x_slider = gr.Slider(0, 1000, step=1, value=0, label="X Coordinate")
y_slider = gr.Slider(0, 1000, step=1, value=0, label="Y Coordinate")
with gr.Column():
interactive_image = gr.Image(label="Interactive Image")
cropped_image = gr.Image(label="Cropped Patch")
label_output = gr.Textbox(label="Predicted Label")
# Interactions
def update_selection(image, x, y):
overlay_image = draw_rectangle(image, x, y)
cropped = crop_image(image, x, y)
return overlay_image, cropped
def predict_from_cropped(cropped):
return predict_label(cropped)
crop_button = gr.Button("Crop")
crop_button.click(fn=update_selection, inputs=[image_input, x_slider, y_slider], outputs=[interactive_image, cropped_image])
predict_button = gr.Button("Predict")
predict_button.click(fn=predict_from_cropped, inputs=cropped_image, outputs=label_output)
def update_sliders(image):
if image:
width, height = image.size
return gr.update(maximum=width - 224), gr.update(maximum=height - 224)
return gr.update(), gr.update()
image_input.change(fn=update_sliders, inputs=image_input, outputs=[x_slider, y_slider])
demo.launch(server_name="0.0.0.0", server_port=7860)