Spaces:
Runtime error
Runtime error
import json | |
import gradio as gr | |
from PIL import Image | |
import safetensors.torch | |
import spaces | |
import timm | |
from timm.models import VisionTransformer | |
import torch | |
from torchvision.transforms import transforms | |
from torchvision.transforms import InterpolationMode | |
import torchvision.transforms.functional as TF | |
torch.set_grad_enabled(False) | |
class Fit(torch.nn.Module): | |
def __init__( | |
self, | |
bounds: tuple[int, int] | int, | |
interpolation = InterpolationMode.LANCZOS, | |
grow: bool = True, | |
pad: float | None = None | |
): | |
super().__init__() | |
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds | |
self.interpolation = interpolation | |
self.grow = grow | |
self.pad = pad | |
def forward(self, img: Image) -> Image: | |
wimg, himg = img.size | |
hbound, wbound = self.bounds | |
hscale = hbound / himg | |
wscale = wbound / wimg | |
if not self.grow: | |
hscale = min(hscale, 1.0) | |
wscale = min(wscale, 1.0) | |
scale = min(hscale, wscale) | |
if scale == 1.0: | |
return img | |
hnew = min(round(himg * scale), hbound) | |
wnew = min(round(wimg * scale), wbound) | |
img = TF.resize(img, (hnew, wnew), self.interpolation) | |
if self.pad is None: | |
return img | |
hpad = hbound - hnew | |
wpad = wbound - wnew | |
tpad = hpad // 2 | |
bpad = hpad - tpad | |
lpad = wpad // 2 | |
rpad = wpad - lpad | |
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad) | |
def __repr__(self) -> str: | |
return ( | |
f"{self.__class__.__name__}(" + | |
f"bounds={self.bounds}, " + | |
f"interpolation={self.interpolation.value}, " + | |
f"grow={self.grow}, " + | |
f"pad={self.pad})" | |
) | |
class CompositeAlpha(torch.nn.Module): | |
def __init__( | |
self, | |
background: tuple[float, float, float] | float, | |
): | |
super().__init__() | |
self.background = (background, background, background) if isinstance(background, float) else background | |
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2) | |
def forward(self, img: torch.Tensor) -> torch.Tensor: | |
if img.shape[-3] == 3: | |
return img | |
alpha = img[..., 3, None, :, :] | |
img[..., :3, :, :] *= alpha | |
background = self.background.expand(-1, img.shape[-2], img.shape[-1]) | |
if background.ndim == 1: | |
background = background[:, None, None] | |
elif background.ndim == 2: | |
background = background[None, :, :] | |
img[..., :3, :, :] += (1.0 - alpha) * background | |
return img[..., :3, :, :] | |
def __repr__(self) -> str: | |
return ( | |
f"{self.__class__.__name__}(" + | |
f"background={self.background})" | |
) | |
transform = transforms.Compose([ | |
Fit((384, 384)), | |
transforms.ToTensor(), | |
CompositeAlpha(0.5), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
transforms.CenterCrop((384, 384)), | |
]) | |
model = timm.create_model( | |
"vit_so400m_patch14_siglip_384.webli", | |
pretrained=False, | |
num_classes=9083, | |
) # type: VisionTransformer | |
safetensors.torch.load_model(model, "JTP_PILOT-e4-vit_so400m_patch14_siglip_384.safetensors") | |
model.eval() | |
with open("tagger_tags.json", "r") as file: | |
tags = json.load(file) # type: dict | |
allowed_tags = list(tags.keys()) | |
for idx, tag in enumerate(allowed_tags): | |
allowed_tags[idx] = tag.replace("_", " ") | |
sorted_tag_score = {} | |
def run_classifier(image, threshold): | |
global sorted_tag_score | |
img = image.convert('RGB') | |
tensor = transform(img).unsqueeze(0) | |
with torch.no_grad(): | |
logits = model(tensor) | |
probits = torch.nn.functional.sigmoid(logits[0]) | |
values, indices = probits.topk(250) | |
tag_score = dict() | |
for i in range(indices.size(0)): | |
tag_score[allowed_tags[indices[i]]] = values[i].item() | |
sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True)) | |
return create_tags(threshold) | |
def create_tags(threshold): | |
global sorted_tag_score | |
filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold} | |
text_no_impl = ", ".join(filtered_tag_score.keys()) | |
return text_no_impl, filtered_tag_score | |
with gr.Blocks(css=".output-class { display: none; }") as demo: | |
gr.Markdown(""" | |
## Joint Tagger Project: PILOT Demo | |
This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results). A threshold of 0.2 is recommended. Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags. | |
This tagger is the result of joint efforts between members of the RedRocket team. Special thanks to Minotoro at frosting.ai for providing the compute power for this project. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label="Source", sources=['upload'], type='pil', height=512, show_label=False) | |
threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold") | |
with gr.Column(): | |
tag_string = gr.Textbox(label="Tag String") | |
label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False) | |
image_input.upload( | |
fn=run_classifier, | |
inputs=[image_input, threshold_slider], | |
outputs=[tag_string, label_box] | |
) | |
threshold_slider.input( | |
fn=create_tags, | |
inputs=[threshold_slider], | |
outputs=[tag_string, label_box] | |
) | |
if __name__ == "__main__": | |
demo.launch() |