RedBottle13 commited on
Commit
d2b4814
·
verified ·
1 Parent(s): 782c482

Delete sky_segmentation.ipynb

Browse files
Files changed (1) hide show
  1. sky_segmentation.ipynb +0 -154
sky_segmentation.ipynb DELETED
@@ -1,154 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "id": "22553677-3a88-4f35-a99c-a6ec7375ef7c",
7
- "metadata": {},
8
- "outputs": [
9
- {
10
- "name": "stderr",
11
- "output_type": "stream",
12
- "text": [
13
- "/Users/yunkeli/anaconda3/lib/python3.10/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
14
- " from .autonotebook import tqdm as notebook_tqdm\n"
15
- ]
16
- },
17
- {
18
- "name": "stdout",
19
- "output_type": "stream",
20
- "text": [
21
- "Running on local URL: http://127.0.0.1:7860\n",
22
- "Running on public URL: https://a2d6699e89843c017c.gradio.live\n",
23
- "\n",
24
- "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
25
- ]
26
- },
27
- {
28
- "data": {
29
- "text/html": [
30
- "<div><iframe src=\"https://a2d6699e89843c017c.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
31
- ],
32
- "text/plain": [
33
- "<IPython.core.display.HTML object>"
34
- ]
35
- },
36
- "metadata": {},
37
- "output_type": "display_data"
38
- }
39
- ],
40
- "source": [
41
- "import cv2\n",
42
- "import numpy as np\n",
43
- "from matplotlib import pyplot as plt\n",
44
- "import gradio as gr\n",
45
- "\n",
46
- "# Helper function to detect sky condition and get the HSV range\n",
47
- "def detect_sky_color(hsv_image):\n",
48
- " # Crop the image to the upper half, because we assume the sky is always on the upper half of the image\n",
49
- " height = hsv_image.shape[0]\n",
50
- " upper_half_image = hsv_image[:height//2, :]\n",
51
- "\n",
52
- " # Define color ranges in HSV\n",
53
- " blue_lower = np.array([46, 17, 148], np.uint8)\n",
54
- " blue_upper = np.array([154, 185, 249], np.uint8)\n",
55
- " orange_lower = np.array([10, 100, 100], np.uint8)\n",
56
- " orange_upper = np.array([25, 183, 254], np.uint8)\n",
57
- " pale_lower = np.array([0, 0, 129], np.uint8)\n",
58
- " pale_upper = np.array([171, 64, 225], np.uint8)\n",
59
- "\n",
60
- " # Create masks for colors\n",
61
- " blue_mask = cv2.inRange(upper_half_image, blue_lower, blue_upper)\n",
62
- " orange_mask = cv2.inRange(upper_half_image, orange_lower, orange_upper)\n",
63
- " pale_mask = cv2.inRange(upper_half_image, pale_lower, pale_upper)\n",
64
- "\n",
65
- " # Calculate the percentage of cropped image covered by each color\n",
66
- " blue_percentage = np.sum(blue_mask > 0) / (upper_half_image.shape[0] * upper_half_image.shape[1]) * 100\n",
67
- " orange_percentage = np.sum(orange_mask > 0) / (upper_half_image.shape[0] * upper_half_image.shape[1]) * 100\n",
68
- " pale_percentage = np.sum(pale_mask > 0) / (upper_half_image.shape[0] * upper_half_image.shape[1]) * 100\n",
69
- "\n",
70
- " # Determine the predominant color in the upper half\n",
71
- " max_color = max(blue_percentage, orange_percentage, pale_percentage)\n",
72
- " if max_color == blue_percentage:\n",
73
- " return blue_lower, blue_upper\n",
74
- " elif max_color == orange_percentage:\n",
75
- " return orange_lower, orange_upper\n",
76
- " else:\n",
77
- " return pale_lower, pale_upper\n",
78
- "\n",
79
- "\n",
80
- "# Main function to process image and display sky masks\n",
81
- "def sky_segmentation(uploaded_image):\n",
82
- " # Read the image\n",
83
- " image = cv2.imread(uploaded_image)\n",
84
- "\n",
85
- " # Convert to HSV image\n",
86
- " hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)\n",
87
- "\n",
88
- " # Determine HSV range based on helper function\n",
89
- " (hsv_lower, hsv_upper) = detect_sky_color(hsv)\n",
90
- "\n",
91
- " # Use hsv_lower and hsv_upper to create a mask, which isolates the sky region\n",
92
- " mask_initial = cv2.inRange(hsv, hsv_lower, hsv_upper)\n",
93
- "\n",
94
- " # Apply morphological operations to fine-tune the mask\n",
95
- " kernel = np.ones((3,3), np.uint8)\n",
96
- " mask_fine_tuned = cv2.erode(mask_initial, kernel, iterations=1)\n",
97
- " mask_fine_tuned = cv2.dilate(mask_fine_tuned, kernel, iterations=1)\n",
98
- "\n",
99
- " # Perform connected component analysis\n",
100
- " num_labels, labels_im = cv2.connectedComponents(mask_fine_tuned)\n",
101
- "\n",
102
- " # Create an array to hold the size of each component\n",
103
- " sizes = np.bincount(labels_im.flatten())\n",
104
- "\n",
105
- " # Set the size of the background (label 0) to zero\n",
106
- " sizes[0] = 0\n",
107
- "\n",
108
- " # Find the largest component\n",
109
- " max_label = np.argmax(sizes)\n",
110
- "\n",
111
- " # Create a mask with only the largest component\n",
112
- " sky_mask = np.zeros_like(mask_fine_tuned)\n",
113
- " sky_mask[labels_im == max_label] = 255 \n",
114
- " \n",
115
- " return sky_mask\n",
116
- "\n",
117
- "\n",
118
- "# Create a Gradio demo\n",
119
- "demo = gr.Interface(sky_segmentation, gr.Image(type='filepath'), \"image\")\n",
120
- "if __name__ == \"__main__\":\n",
121
- " demo.launch(share=True)\n"
122
- ]
123
- },
124
- {
125
- "cell_type": "code",
126
- "execution_count": null,
127
- "id": "1e4ad199-ca35-48c0-9889-66fa874c4d9d",
128
- "metadata": {},
129
- "outputs": [],
130
- "source": []
131
- }
132
- ],
133
- "metadata": {
134
- "kernelspec": {
135
- "display_name": "Python 3 (ipykernel)",
136
- "language": "python",
137
- "name": "python3"
138
- },
139
- "language_info": {
140
- "codemirror_mode": {
141
- "name": "ipython",
142
- "version": 3
143
- },
144
- "file_extension": ".py",
145
- "mimetype": "text/x-python",
146
- "name": "python",
147
- "nbconvert_exporter": "python",
148
- "pygments_lexer": "ipython3",
149
- "version": "3.10.9"
150
- }
151
- },
152
- "nbformat": 4,
153
- "nbformat_minor": 5
154
- }