Spaces:
Sleeping
Sleeping
Delete sky_segmentation.ipynb
Browse files- sky_segmentation.ipynb +0 -154
sky_segmentation.ipynb
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"id": "22553677-3a88-4f35-a99c-a6ec7375ef7c",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [
|
9 |
-
{
|
10 |
-
"name": "stderr",
|
11 |
-
"output_type": "stream",
|
12 |
-
"text": [
|
13 |
-
"/Users/yunkeli/anaconda3/lib/python3.10/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
14 |
-
" from .autonotebook import tqdm as notebook_tqdm\n"
|
15 |
-
]
|
16 |
-
},
|
17 |
-
{
|
18 |
-
"name": "stdout",
|
19 |
-
"output_type": "stream",
|
20 |
-
"text": [
|
21 |
-
"Running on local URL: http://127.0.0.1:7860\n",
|
22 |
-
"Running on public URL: https://a2d6699e89843c017c.gradio.live\n",
|
23 |
-
"\n",
|
24 |
-
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
25 |
-
]
|
26 |
-
},
|
27 |
-
{
|
28 |
-
"data": {
|
29 |
-
"text/html": [
|
30 |
-
"<div><iframe src=\"https://a2d6699e89843c017c.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
31 |
-
],
|
32 |
-
"text/plain": [
|
33 |
-
"<IPython.core.display.HTML object>"
|
34 |
-
]
|
35 |
-
},
|
36 |
-
"metadata": {},
|
37 |
-
"output_type": "display_data"
|
38 |
-
}
|
39 |
-
],
|
40 |
-
"source": [
|
41 |
-
"import cv2\n",
|
42 |
-
"import numpy as np\n",
|
43 |
-
"from matplotlib import pyplot as plt\n",
|
44 |
-
"import gradio as gr\n",
|
45 |
-
"\n",
|
46 |
-
"# Helper function to detect sky condition and get the HSV range\n",
|
47 |
-
"def detect_sky_color(hsv_image):\n",
|
48 |
-
" # Crop the image to the upper half, because we assume the sky is always on the upper half of the image\n",
|
49 |
-
" height = hsv_image.shape[0]\n",
|
50 |
-
" upper_half_image = hsv_image[:height//2, :]\n",
|
51 |
-
"\n",
|
52 |
-
" # Define color ranges in HSV\n",
|
53 |
-
" blue_lower = np.array([46, 17, 148], np.uint8)\n",
|
54 |
-
" blue_upper = np.array([154, 185, 249], np.uint8)\n",
|
55 |
-
" orange_lower = np.array([10, 100, 100], np.uint8)\n",
|
56 |
-
" orange_upper = np.array([25, 183, 254], np.uint8)\n",
|
57 |
-
" pale_lower = np.array([0, 0, 129], np.uint8)\n",
|
58 |
-
" pale_upper = np.array([171, 64, 225], np.uint8)\n",
|
59 |
-
"\n",
|
60 |
-
" # Create masks for colors\n",
|
61 |
-
" blue_mask = cv2.inRange(upper_half_image, blue_lower, blue_upper)\n",
|
62 |
-
" orange_mask = cv2.inRange(upper_half_image, orange_lower, orange_upper)\n",
|
63 |
-
" pale_mask = cv2.inRange(upper_half_image, pale_lower, pale_upper)\n",
|
64 |
-
"\n",
|
65 |
-
" # Calculate the percentage of cropped image covered by each color\n",
|
66 |
-
" blue_percentage = np.sum(blue_mask > 0) / (upper_half_image.shape[0] * upper_half_image.shape[1]) * 100\n",
|
67 |
-
" orange_percentage = np.sum(orange_mask > 0) / (upper_half_image.shape[0] * upper_half_image.shape[1]) * 100\n",
|
68 |
-
" pale_percentage = np.sum(pale_mask > 0) / (upper_half_image.shape[0] * upper_half_image.shape[1]) * 100\n",
|
69 |
-
"\n",
|
70 |
-
" # Determine the predominant color in the upper half\n",
|
71 |
-
" max_color = max(blue_percentage, orange_percentage, pale_percentage)\n",
|
72 |
-
" if max_color == blue_percentage:\n",
|
73 |
-
" return blue_lower, blue_upper\n",
|
74 |
-
" elif max_color == orange_percentage:\n",
|
75 |
-
" return orange_lower, orange_upper\n",
|
76 |
-
" else:\n",
|
77 |
-
" return pale_lower, pale_upper\n",
|
78 |
-
"\n",
|
79 |
-
"\n",
|
80 |
-
"# Main function to process image and display sky masks\n",
|
81 |
-
"def sky_segmentation(uploaded_image):\n",
|
82 |
-
" # Read the image\n",
|
83 |
-
" image = cv2.imread(uploaded_image)\n",
|
84 |
-
"\n",
|
85 |
-
" # Convert to HSV image\n",
|
86 |
-
" hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)\n",
|
87 |
-
"\n",
|
88 |
-
" # Determine HSV range based on helper function\n",
|
89 |
-
" (hsv_lower, hsv_upper) = detect_sky_color(hsv)\n",
|
90 |
-
"\n",
|
91 |
-
" # Use hsv_lower and hsv_upper to create a mask, which isolates the sky region\n",
|
92 |
-
" mask_initial = cv2.inRange(hsv, hsv_lower, hsv_upper)\n",
|
93 |
-
"\n",
|
94 |
-
" # Apply morphological operations to fine-tune the mask\n",
|
95 |
-
" kernel = np.ones((3,3), np.uint8)\n",
|
96 |
-
" mask_fine_tuned = cv2.erode(mask_initial, kernel, iterations=1)\n",
|
97 |
-
" mask_fine_tuned = cv2.dilate(mask_fine_tuned, kernel, iterations=1)\n",
|
98 |
-
"\n",
|
99 |
-
" # Perform connected component analysis\n",
|
100 |
-
" num_labels, labels_im = cv2.connectedComponents(mask_fine_tuned)\n",
|
101 |
-
"\n",
|
102 |
-
" # Create an array to hold the size of each component\n",
|
103 |
-
" sizes = np.bincount(labels_im.flatten())\n",
|
104 |
-
"\n",
|
105 |
-
" # Set the size of the background (label 0) to zero\n",
|
106 |
-
" sizes[0] = 0\n",
|
107 |
-
"\n",
|
108 |
-
" # Find the largest component\n",
|
109 |
-
" max_label = np.argmax(sizes)\n",
|
110 |
-
"\n",
|
111 |
-
" # Create a mask with only the largest component\n",
|
112 |
-
" sky_mask = np.zeros_like(mask_fine_tuned)\n",
|
113 |
-
" sky_mask[labels_im == max_label] = 255 \n",
|
114 |
-
" \n",
|
115 |
-
" return sky_mask\n",
|
116 |
-
"\n",
|
117 |
-
"\n",
|
118 |
-
"# Create a Gradio demo\n",
|
119 |
-
"demo = gr.Interface(sky_segmentation, gr.Image(type='filepath'), \"image\")\n",
|
120 |
-
"if __name__ == \"__main__\":\n",
|
121 |
-
" demo.launch(share=True)\n"
|
122 |
-
]
|
123 |
-
},
|
124 |
-
{
|
125 |
-
"cell_type": "code",
|
126 |
-
"execution_count": null,
|
127 |
-
"id": "1e4ad199-ca35-48c0-9889-66fa874c4d9d",
|
128 |
-
"metadata": {},
|
129 |
-
"outputs": [],
|
130 |
-
"source": []
|
131 |
-
}
|
132 |
-
],
|
133 |
-
"metadata": {
|
134 |
-
"kernelspec": {
|
135 |
-
"display_name": "Python 3 (ipykernel)",
|
136 |
-
"language": "python",
|
137 |
-
"name": "python3"
|
138 |
-
},
|
139 |
-
"language_info": {
|
140 |
-
"codemirror_mode": {
|
141 |
-
"name": "ipython",
|
142 |
-
"version": 3
|
143 |
-
},
|
144 |
-
"file_extension": ".py",
|
145 |
-
"mimetype": "text/x-python",
|
146 |
-
"name": "python",
|
147 |
-
"nbconvert_exporter": "python",
|
148 |
-
"pygments_lexer": "ipython3",
|
149 |
-
"version": "3.10.9"
|
150 |
-
}
|
151 |
-
},
|
152 |
-
"nbformat": 4,
|
153 |
-
"nbformat_minor": 5
|
154 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|