import gradio as gr import os import time import json import re from uuid import uuid4 from datetime import datetime from duckduckgo_search import DDGS from sentence_transformers import SentenceTransformer, util from typing import List, Dict, Any, Optional, Union, Tuple import logging import numpy as np from collections import deque from huggingface_hub import InferenceClient import requests import arxiv import scholarly import pymed import wikipedia import trafilatura from trafilatura import extract, fetch_url import pickle import faiss import threading from concurrent.futures import ThreadPoolExecutor, as_completed import tiktoken logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(name) HF_API_KEY = os.environ.get("HF_API_KEY") if not HF_API_KEY: raise ValueError("Please set the HF_API_KEY environment variable.") client = InferenceClient(provider="hf-inference", api_key=HF_API_KEY) # Enhanced Model Configuration MAIN_LLM_MODEL = "mistralai/Mistral-Nemo-Instruct-2407" # Most powerful for main reasoning REASONING_LLM_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B" # Specialized for analytical tasks CRITIC_LLM_MODEL = "Qwen/QwQ-32B-Preview" # Diverse perspective for critiques SPECIALIST_MODELS = { "medical": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "scientific": "mistralai/Mistral-7B-Instruct-v0.2", "financial": "mistralai/Mistral-7B-Instruct-v0.3", "legal": "Qwen/Qwen2.5-Coder-32B-Instruct" } ENSEMBLE_MODELS = [MAIN_LLM_MODEL, REASONING_LLM_MODEL, CRITIC_LLM_MODEL] + list(SPECIALIST_MODELS.values()) # Enhanced Parameters MAX_ITERATIONS = 100 # Increased for deeper research TIMEOUT = 300 # Longer timeout RETRY_DELAY = 15 NUM_RESULTS = 50 # More comprehensive search SIMILARITY_THRESHOLD = 0.12 # More lenient for broader coverage MAX_CONTEXT_ITEMS = 100 MAX_HISTORY_ITEMS = 25 MAX_FULL_TEXT_LENGTH = 50000 FAISS_INDEX_PATH = "research_index.faiss" RESEARCH_DATA_PATH = "research_data.pkl" PAPER_SUMMARIES_PATH = "paper_summaries.pkl" #New path for storing paper summary try: main_similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2') concept_similarity_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') document_similarity_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-dot-v1') embedding_dim = document_similarity_model.get_sentence_embedding_dimension() if os.path.exists(FAISS_INDEX_PATH): index = faiss.read_index(FAISS_INDEX_PATH) logger.info(f"Loaded FAISS index from {FAISS_INDEX_PATH}") else: index = faiss.IndexFlatIP(embedding_dim) # Use IndexFlatIP for inner product (cosine similarity). logger.info("Created a new FAISS index.") content_copy download Use code with caution. except Exception as e: logger.error(f"Failed to load models or initialize FAISS: {e}") raise def get_token_count(text): try: encoding = tiktoken.get_encoding("cl100k_base") return len(encoding.encode(text)) except: return len(text.split()) * 1.3 def save_research_data(data, index): try: with open(RESEARCH_DATA_PATH, "wb") as f: pickle.dump(data, f) faiss.write_index(index, FAISS_INDEX_PATH) logger.info(f"Research data and index saved to {RESEARCH_DATA_PATH} and {FAISS_INDEX_PATH}") except Exception as e: logger.error(f"Error saving research data: {e}") def load_research_data(): if os.path.exists(RESEARCH_DATA_PATH): try: with open(RESEARCH_DATA_PATH, "rb") as f: data = pickle.load(f) logger.info(f"Loaded research data from {RESEARCH_DATA_PATH}") return data except Exception as e: logger.error(f"Error loading research data: {e}") return {} else: logger.info("No existing research data found.") return {} def save_paper_summaries(summaries: Dict[str, str]): try: with open(PAPER_SUMMARIES_PATH, "wb") as f: pickle.dump(summaries, f) logger.info(f"Paper summaries saved to {PAPER_SUMMARIES_PATH}") except Exception as e: logger.error(f"Error saving paper summaries: {e}") def load_paper_summaries() -> Dict[str, str]: if os.path.exists(PAPER_SUMMARIES_PATH): try: with open(PAPER_SUMMARIES_PATH, "rb") as f: data = pickle.load(f) logger.info(f"Loaded paper summaries from {PAPER_SUMMARIES_PATH}") return data except Exception as e: logger.error(f"Error loading paper summaries: {e}") return {} else: logger.info("No existing paper summaries found.") return {} def hf_inference(model_name, prompt, max_tokens=2000, retries=5, stream=False): # Added stream parameter for attempt in range(retries): try: messages = [{"role": "user", "content": prompt}] response_generator = client.chat.completions.create( model=model_name, messages=messages, max_tokens=max_tokens, stream=stream # Pass the stream parameter ) if stream: return response_generator # Return the generator directly else: # If not streaming, get the full response response = next(response_generator) # Consume the first chunk to get complete object return {"generated_text": response.choices[0].message.content} except Exception as e: if attempt == retries - 1: logger.error(f"Request failed after {retries} retries: {e}") return {"error": f"Request failed after {retries} retries: {e}"} time.sleep(RETRY_DELAY * (1 + attempt)) return {"error": "Request failed after multiple retries."} def ensemble_inference(prompt, models=ENSEMBLE_MODELS, max_tokens=1500, stream=False): #Added stream results = [] if stream: # If streaming, return a generator that yields from each model def generate_responses(): with ThreadPoolExecutor(max_workers=len(models)) as executor: futures = {executor.submit(hf_inference, model, prompt, max_tokens, stream=True): model for model in models} for future in as_completed(futures): model = future_to_model[future] try: for chunk in future.result(): # Iterate through chunks yield {"model": model, "text": chunk.choices[0].delta.content} #yield the content of the chunk except Exception as e: logger.error(f"Error with model {model}: {e}") yield {"model": model, "text": f"Error: {e}"} return generate_responses() # return the generator else: #Non-streaming behavior with ThreadPoolExecutor(max_workers=len(models)) as executor: future_to_model = {executor.submit(hf_inference, model, prompt, max_tokens, stream=False): model for model in models} for future in as_completed(future_to_model): model = future_to_model[future] try: result = future.result() if "generated_text" in result: results.append({"model": model, "text": result["generated_text"]}) except Exception as e: logger.error(f"Error with model {model}: {e}") if not results: return {"error": "All models failed to generate responses"} if len(results) == 1: return {"generated_text": results[0]["text"]} synthesis_prompt = "Synthesize these expert responses into a single coherent answer:\n\n" for result in results: synthesis_prompt += f"Expert {results.index(result) + 1} ({result['model'].split('/')[-1]}):\n{result['text']}\n\n" synthesis = hf_inference(MAIN_LLM_MODEL, synthesis_prompt) # Use a consistent model for final synthesis if "generated_text" in synthesis: return synthesis else: return {"generated_text": max(results, key=lambda x: len(x["text"]))["text"]} # Fallback content_copy download Use code with caution. def tool_search_web(query: str, num_results: int = NUM_RESULTS, safesearch: str = "moderate", time_filter: Optional[str] = None, region: str = "wt-wt", language: str = "en-us") -> list: try: with DDGS() as ddgs: kwargs = { "keywords": query, "max_results": num_results, "safesearch": safesearch, "region": region, "hreflang": language, } if time_filter: if time_filter in ['d', 'w', 'm', 'y']: kwargs["time"] = time_filter results = [r for r in ddgs.text(**kwargs)] if results: return [{"title": r["title"], "snippet": r["body"], "url": r["href"]} for r in results] else: if time_filter and "time" in kwargs: del kwargs["time"] results = [r for r in ddgs.text(**kwargs)] if results: return [{"title": r["title"], "snippet": r["body"], "url": r["href"]} for r in results] return [] except Exception as e: logger.error(f"DuckDuckGo search error: {e}") return [] content_copy download Use code with caution. def tool_search_arxiv(query: str, max_results: int = 5) -> list: try: client = arxiv.Client() search = arxiv.Search( query=query, max_results=max_results, sort_by=arxiv.SortCriterion.Relevance ) results = [] for paper in client.results(search): results.append({ "title": paper.title, "snippet": paper.summary[:500] + "..." if len(paper.summary) > 500 else paper.summary, "url": paper.pdf_url, "authors": ", ".join(author.name for author in paper.authors), "published": paper.published.strftime("%Y-%m-%d") if paper.published else "Unknown", "source": "arXiv" }) return results except Exception as e: logger.error(f"arXiv search error: {e}") return [] def tool_search_pubmed(query: str, max_results: int = 5) -> list: try: pubmed = pymed.PubMed(tool="ResearchAssistant", email="researcher@example.com") results = list(pubmed.query(query, max_results=max_results)) output = [] for article in results: try: data = article.toDict() output.append({ "title": data.get("title", "No title"), "snippet": data.get("abstract", "No abstract")[:500] + "..." if data.get("abstract", "") and len(data.get("abstract", "")) > 500 else data.get("abstract", "No abstract"), "url": f"https://pubmed.ncbi.nlm.nih.gov/{data.get('pubmed_id')}/", "authors": ", ".join(author.get("name", "") for author in data.get("authors", [])), "published": data.get("publication_date", "Unknown"), "source": "PubMed" }) except: continue return output except Exception as e: logger.error(f"PubMed search error: {e}") return [] content_copy download Use code with caution. def tool_search_wikipedia(query: str, max_results: int = 3) -> list: try: search_results = wikipedia.search(query, results=max_results) results = [] for title in search_results: try: page = wikipedia.page(title) summary = page.summary snippet = summary[:500] + "..." if len(summary) > 500 else summary results.append({ "title": page.title, "snippet": snippet, "url": page.url, "source": "Wikipedia" }) except (wikipedia.exceptions.DisambiguationError, wikipedia.exceptions.PageError): continue return results except Exception as e: logger.error(f"Wikipedia search error: {e}") return [] content_copy download Use code with caution. def tool_search_scholar(query: str, max_results: int = 5) -> list: try: search_query = scholarly.search_pubs(query) results = [] for _ in range(max_results): try: result = next(search_query) results.append({ "title": result.get("bib", {}).get("title", "No title"), "snippet": result.get("bib", {}).get("abstract", "No abstract")[:500] + "..." if result.get("bib", {}).get("abstract") else result.get("bib", {}).get("abstract", "No abstract"), "url": result.get("pub_url", "#"), "authors": ", ".join(result.get("bib", {}).get("author", [])), "published": result.get("bib", {}).get("pub_year", "Unknown"), "source": "Google Scholar" }) except StopIteration: break except Exception as e: logger.warning(f"Error processing Scholar result: {e}") continue return results except Exception as e: logger.error(f"Google Scholar search error: {e}") return [] def extract_article_content(url: str) -> str: try: downloaded = fetch_url(url) if downloaded is None: return "" return extract(downloaded, favor_precision=True) except Exception as e: logger.error(f"Failed to extract article content from {url}: {e}") return "" def tool_reason(prompt: str, search_results: list, reasoning_context: list = [], critique: str = "", focus_areas: list = []) -> str: if not search_results: return "No search results to reason about." reasoning_input = "Reason about the following search results in relation to the prompt:\n\n" reasoning_input += f"Prompt: {prompt}\n\n" if focus_areas: reasoning_input += f"Focus particularly on these aspects: {', '.join(focus_areas)}\n\n" results_by_source = {} for i, result in enumerate(search_results): source = result.get('source', 'Web Search') # Default to 'Web Search' if source not in results_by_source: results_by_source[source] = [] results_by_source[source].append((i, result)) for source, results in results_by_source.items(): reasoning_input += f"\n--- {source} Results ---\n" for i, result in results: reasoning_input += f"- Result {i + 1}: Title: {result['title']}\n Snippet: {result['snippet']}\n" if 'authors' in result: reasoning_input += f" Authors: {result['authors']}\n" if 'published' in result: reasoning_input += f" Published: {result['published']}\n" reasoning_input += "\n" if reasoning_context: recent_context = reasoning_context[-MAX_HISTORY_ITEMS:] # Limit history reasoning_input += "\nPrevious Reasoning Context:\n" + "\n".join(recent_context) if critique: reasoning_input += f"\n\nRecent critique to address: {critique}\n" reasoning_input += "\nProvide a thorough, nuanced analysis that builds upon previous reasoning if applicable. Consider multiple perspectives, potential contradictions in the search results, and the reliability of different sources. Address any specific critiques." reasoning_output = ensemble_inference(reasoning_input) # Use ensemble for high-quality reasoning. if isinstance(reasoning_output, dict) and "generated_text" in reasoning_output: return reasoning_output["generated_text"].strip() else: logger.error(f"Failed to generate reasoning: {reasoning_output}") return "Could not generate reasoning due to an error." content_copy download Use code with caution. def tool_summarize(insights: list, prompt: str, contradictions: list = []) -> str: if not insights: return "No insights to summarize." summarization_input = f"Synthesize the following insights into a cohesive and comprehensive summary regarding: '{prompt}'\n\n" max_tokens = 12000 # Increased token limit selected_insights = [] token_count = get_token_count(summarization_input) + get_token_count("\n\n".join(contradictions)) for insight in reversed(insights): insight_tokens = get_token_count(insight) if token_count + insight_tokens < max_tokens: selected_insights.insert(0, insight) token_count += insight_tokens else: break summarization_input += "\n\n".join(selected_insights) if contradictions: summarization_input += "\n\nAddress these specific contradictions:\n" + "\n".join(contradictions) summarization_input += "\n\nProvide a well-structured summary that:\n1. Presents the main findings\n2. Acknowledges limitations and uncertainties\n3. Highlights areas of consensus and disagreement\n4. Suggests potential directions for further inquiry\n5. Evaluates the strength of evidence for key claims" summarization_output = ensemble_inference(summarization_input) if isinstance(summarization_output, dict) and "generated_text" in summarization_output: return summarization_output["generated_text"].strip() else: logger.error(f"Failed to generate summary: {summarization_output}") return "Could not generate a summary due to an error." content_copy download Use code with caution. def tool_generate_search_query(prompt: str, previous_queries: list = [], failed_queries: list = [], focus_areas: list = []) -> str: query_gen_input = f"Generate an effective search query for the following prompt: {prompt}\n" if previous_queries: recent_queries = previous_queries[-MAX_HISTORY_ITEMS:] query_gen_input += "Previous search queries:\n" + "\n".join(recent_queries) + "\n" if failed_queries: query_gen_input += "These queries didn't yield useful results:\n" + "\n".join(failed_queries) + "\n" if focus_areas: query_gen_input += f"Focus particularly on these aspects: {', '.join(focus_areas)}\n" query_gen_input += "Refine the search query based on previous queries, aiming for more precise results. Consider using advanced search operators like site:, filetype:, intitle:, etc. when appropriate. Make sure the query is well-formed for academic and scientific search engines.\n" query_gen_input += "Search Query:" query_gen_output = hf_inference(MAIN_LLM_MODEL, query_gen_input) if isinstance(query_gen_output, dict) and 'generated_text' in query_gen_output: return query_gen_output['generated_text'].strip() logger.error(f"Failed to generate search query: {query_gen_output}") return "" content_copy download Use code with caution. def tool_critique_reasoning(reasoning_output: str, prompt: str, previous_critiques: list = []) -> str: critique_input = f"Critically evaluate the following reasoning output in relation to the prompt:\n\nPrompt: {prompt}\n\nReasoning: {reasoning_output}\n\n" if previous_critiques: critique_input += "Previous critiques that should be addressed:\n" + "\n".join(previous_critiques[-MAX_HISTORY_ITEMS:]) + "\n\n" critique_input += "Identify any flaws, biases, logical fallacies, unsupported claims, or areas for improvement. Be specific and constructive. Suggest concrete ways to enhance the reasoning. Also evaluate the strength of evidence and whether conclusions are proportionate to the available information." critique_output = hf_inference(CRITIC_LLM_MODEL, critique_input) # Use specialized critique model. if isinstance(critique_output, dict) and "generated_text" in critique_output: return critique_output["generated_text"].strip() logger.error(f"Failed to generate critique: {critique_output}") return "Could not generate a critique due to an error." content_copy download Use code with caution. def tool_identify_contradictions(insights: list) -> list: if len(insights) < 2: return [] max_tokens = 12000 # Increased token limit for potentially more contradictions selected_insights = [] token_count = 0 for insight in reversed(insights): insight_tokens = get_token_count(insight) if token_count + insight_tokens < max_tokens: selected_insights.insert(0, insight) token_count += insight_tokens else: break contradiction_input = "Identify specific contradictions in these insights:\n\n" + "\n\n".join(selected_insights) contradiction_input += "\n\nList each contradiction as a separate numbered point. For each contradiction, cite the specific claims that are in tension and evaluate which claim is better supported. If no contradictions exist, respond with 'No contradictions found.'" contradiction_output = hf_inference(CRITIC_LLM_MODEL, contradiction_input) # Use critique model if isinstance(contradiction_output, dict) and "generated_text" in contradiction_output: result = contradiction_output["generated_text"].strip() if result == "No contradictions found.": return [] # More robust contradiction extraction, handles multi-sentence contradictions contradictions = re.findall(r'\d+\.\s+(.*?)(?=\d+\.|$)', result, re.DOTALL) return [c.strip() for c in contradictions if c.strip()] logger.error(f"Failed to identify contradictions: {contradiction_output}") return [] content_copy download Use code with caution. def tool_identify_focus_areas(prompt: str, insights: list = [], failed_areas: list = []) -> list: focus_input = f"Based on this research prompt: '{prompt}'\n\n" if insights: recent_insights = insights[-5:] if len(insights) > 5 else insights focus_input += "And these existing insights:\n" + "\n".join(recent_insights) + "\n\n" if failed_areas: focus_input += f"These focus areas didn't yield useful results: {', '.join(failed_areas)}\n\n" focus_input += "Identify 3-5 specific aspects that should be investigated further to get a complete understanding. Be precise and prioritize underexplored areas. For each suggested area, briefly explain why it's important to investigate." focus_output = hf_inference(MAIN_LLM_MODEL, focus_input) # Consistent model if isinstance(focus_output, dict) and "generated_text" in focus_output: result = focus_output["generated_text"].strip() # More robust extraction, handles different list formats areas = re.findall(r'(?:^|\n)(?:\d+\.|\*|\-)\s*(.*?)(?=(?:\n(?:\d+\.|\*|\-|$))|$)', result) return [area.strip() for area in areas if area.strip()][:5] logger.error(f"Failed to identify focus areas: {focus_output}") return [] content_copy download Use code with caution. def add_to_faiss_index(text: str): embedding = document_similarity_model.encode(text, convert_to_tensor=True) embedding_np = embedding.cpu().numpy().reshape(1, -1) if embedding_np.shape[1] != embedding_dim: logger.error(f"Embedding dimension mismatch: expected {embedding_dim}, got {embedding_np.shape[1]}") return faiss.normalize_L2(embedding_np) # Normalize for cosine similarity. index.add(embedding_np) def search_faiss_index(query: str, top_k: int = 5) -> List[str]: query_embedding = document_similarity_model.encode(query, convert_to_tensor=True) query_embedding_np = query_embedding.cpu().numpy().reshape(1, -1) faiss.normalize_L2(query_embedding_np) distances, indices = index.search(query_embedding_np, top_k) return indices[0].tolist() def filter_results(search_results, prompt, previous_snippets=None): if not main_similarity_model or not search_results: return search_results try: prompt_embedding = main_similarity_model.encode(prompt, convert_to_tensor=True) filtered_results = [] seen_snippets = set() if previous_snippets: seen_snippets.update(previous_snippets) for result in search_results: combined_text = result['title'] + " " + result['snippet'] if result['snippet'] in seen_snippets: # Prevent exact duplicates continue result_embedding = main_similarity_model.encode(combined_text, convert_to_tensor=True) cosine_score = util.pytorch_cos_sim(prompt_embedding, result_embedding)[0][0].item() if cosine_score >= SIMILARITY_THRESHOLD: result['relevance_score'] = cosine_score filtered_results.append(result) seen_snippets.add(result['snippet']) # Add snippets after filtering add_to_faiss_index(result['snippet']) filtered_results.sort(key=lambda x: x.get('relevance_score', 0), reverse=True) # Sort by relevance. return filtered_results except Exception as e: logger.error(f"Error during filtering: {e}") return search_results # Return original results on error. content_copy download Use code with caution. def tool_extract_key_entities(prompt: str) -> list: entity_input = f"Extract the key entities (people, organizations, concepts, technologies, events, time periods, locations, etc.) from this research prompt that should be investigated individually:\n\n{prompt}\n\nList the 5-7 most important entities, one per line, with a brief explanation (2-3 sentences) of why each is central to the research question." entity_output = hf_inference(MAIN_LLM_MODEL, entity_input) if isinstance(entity_output, dict) and "generated_text" in entity_output: result = entity_output["generated_text"].strip() entities = [e.strip() for e in result.split('\n') if e.strip()] return entities[:7] # Limit to top 7 entities logger.error(f"Failed to extract key entities: {entity_output}") return [] content_copy download Use code with caution. def tool_meta_analyze(entity_insights: Dict[str, list], prompt: str) -> str: if not entity_insights: return "No entity insights to analyze." meta_input = f"Perform a meta-analysis across these different entities related to the prompt: '{prompt}'\n\n" for entity, insights in entity_insights.items(): if insights: meta_input += f"\n--- {entity} ---\n" + insights[-1] + "\n" # Most recent insight for each entity meta_input += "\nProvide a high-level synthesis that identifies:\n1. Common themes across entities\n2. Important differences and contradictions\n3. How these entities interact or influence each other\n4. The broader implications for the original research question\n5. A systems-level understanding of how these elements fit together" meta_output = ensemble_inference(meta_input) # Ensemble for meta-analysis if isinstance(meta_output, dict) and "generated_text" in meta_output: return meta_output["generated_text"].strip() logger.error(f"Failed to perform meta-analysis: {meta_output}") return "Could not generate a meta-analysis due to an error." content_copy download Use code with caution. def tool_draft_research_plan(prompt: str, entities: list, focus_areas: list = []) -> str: plan_input = f"Create a detailed research plan for investigating this question: '{prompt}'\n\n" if entities: plan_input += "Key entities to investigate:\n" + "\n".join(entities) + "\n\n" if focus_areas: plan_input += "Additional focus areas:\n" + "\n".join(focus_areas) + "\n\n" plan_input += "The research plan should include:\n" plan_input += "1. Main research questions and sub-questions\n" plan_input += "2. Methodology for investigating each aspect\n" plan_input += "3. Potential sources and databases to consult\n" plan_input += "4. Suggested sequence of investigation\n" plan_input += "5. Potential challenges and how to address them\n" plan_input += "6. Criteria for evaluating the quality of findings" plan_output = hf_inference(REASONING_LLM_MODEL, plan_input) # Use reasoning model if isinstance(plan_output, dict) and "generated_text" in plan_output: return plan_output["generated_text"].strip() logger.error(f"Failed to generate research plan: {plan_output}") return "Could not generate a research plan due to an error." content_copy download Use code with caution. def tool_extract_article(url: str) -> str: extracted_text = extract_article_content(url) return extracted_text if extracted_text else f"Could not extract content from {url}" New tool for summarizing a single paper def tool_summarize_paper(paper_text: str) -> str: summarization_prompt = f"""Summarize this academic paper, focusing on the following: Main Research Question(s): What questions does the paper address? Methodology: Briefly describe the methods used (e.g., experiments, surveys, simulations, theoretical analysis). Key Findings: What are the most important results or conclusions? Limitations: What are the acknowledged limitations of the study? Implications: What are the broader implications of the findings, according to the authors? Paper Text: {paper_text[:MAX_FULL_TEXT_LENGTH]} """ # Truncate if necessary summary = hf_inference(REASONING_LLM_MODEL, summarization_prompt, max_tokens=500) if isinstance(summary, dict) and "generated_text" in summary: return summary["generated_text"].strip() else: logger.error(f"Failed to generate summary: {summary}") return "Could not generate a summary due to an error." def tool_search_patents(query: str, max_results: int = 10) -> list: """Search patent databases including USPTO and EPO""" # Implementation details... def tool_search_clinical_trials(query: str, max_results: int = 10) -> list: """Search ClinicalTrials.gov and WHO ICTRP""" # Implementation details... def tool_search_datasets(query: str, max_results: int = 10) -> list: """Search academic datasets from repositories like Kaggle, UCI, etc.""" # Implementation details... def tool_search_conferences(query: str, max_results: int = 10) -> list: """Search major conference proceedings""" # Implementation details... tools = { "search_web": { "function": tool_search_web, "description": "Searches the web for information.", "parameters": { "query": {"type": "string", "description": "The search query."}, "num_results": {"type": "integer", "description": "Number of results to return."}, "time_filter": {"type": "string", "description": "Optional time filter (d, w, m, y)."}, "region": {"type": "string", "description": "Optional region code."}, "language": {"type": "string", "description": "Optional language code."} }, }, "search_arxiv": { "function": tool_search_arxiv, "description": "Searches arXiv for scientific papers.", "parameters": { "query": {"type": "string", "description": "The search query for scientific papers."}, "max_results": {"type": "integer", "description": "Maximum number of papers to return."} }, }, "search_pubmed": { "function": tool_search_pubmed, "description": "Searches PubMed for medical and scientific literature.", "parameters": { "query": {"type": "string", "description": "The search query for medical literature."}, "max_results": {"type": "integer", "description": "Maximum number of articles to return."} }, }, "search_wikipedia": { "function": tool_search_wikipedia, "description": "Searches Wikipedia for information.", "parameters": { "query": {"type": "string", "description": "The search query for Wikipedia."}, "max_results": {"type": "integer", "description": "Maximum number of articles to return."} }, }, "search_scholar": { "function": tool_search_scholar, "description": "Searches Google Scholar for academic publications.", "parameters": { "query": {"type": "string", "description": "The search query for Google Scholar."}, "max_results": {"type": "integer", "description": "Maximum number of articles to return."} } }, "extract_article": { "function": tool_extract_article, "description": "Extracts the main content from a web article URL", "parameters": { "url": {"type": "string", "description": "The URL of the article to extract"} }, }, "summarize_paper": { "function": tool_summarize_paper, "description": "Summarizes the content of an academic paper.", "parameters": { "paper_text": {"type": "string", "description": "The full text of the paper to be summarized."}, }, }, "reason": { "function": tool_reason, "description": "Analyzes and reasons about information.", "parameters": { "prompt": {"type": "string", "description": "The original prompt."}, "search_results": {"type": "array", "description": "Search results to analyze."}, "reasoning_context": {"type": "array", "description": "Previous reasoning outputs."}, "critique": {"type": "string", "description": "Recent critique to address."}, "focus_areas": {"type": "array", "description": "Specific aspects to focus on."} }, }, "summarize": { "function": tool_summarize, "description": "Synthesizes insights into a cohesive summary.", "parameters": { "insights": {"type": "array", "description": "Insights to summarize."}, "prompt": {"type": "string", "description": "The original research prompt."}, "contradictions": {"type": "array", "description": "Specific contradictions to address."} }, }, "generate_search_query": { "function": tool_generate_search_query, "description": "Generates an optimized search query", "parameters":{ "prompt": {"type": "string", "description": "The original user prompt."}, "previous_queries": {"type": "array", "description": "Previously used search queries."}, "failed_queries": {"type": "array", "description": "Queries that didn't yield good results."}, "focus_areas": {"type": "array", "description": "Specific aspects to focus on."} } }, "critique_reasoning": { "function": tool_critique_reasoning, "description": "Critically evaluates reasoning output.", "parameters": { "reasoning_output": {"type": "string", "description": "The reasoning output to critique."}, "prompt": {"type": "string", "description": "The original prompt."}, "previous_critiques": {"type": "array", "description": "Previous critique outputs."} }, }, "identify_contradictions": { "function": tool_identify_contradictions, "description": "Identifies contradictions across multiple insights.", "parameters": { "insights": {"type": "array", "description": "Collection of insights to analyze for contradictions."}, }, }, "identify_focus_areas": { "function": tool_identify_focus_areas, "description": "Identifies specific aspects that need further investigation.", "parameters": { "prompt": {"type": "string", "description": "The original research prompt."}, "insights": {"type": "array", "description": "Existing insights to build upon."}, "failed_areas": {"type": "array", "description": "Previously tried areas that yielded poor results."} }, }, "extract_key_entities": { "function": tool_extract_key_entities, "description": "Extracts key entities from the prompt for focused research.", "parameters": { "prompt": {"type": "string", "description": "The original research prompt."} }, }, "meta_analyze": { "function": tool_meta_analyze, "description": "Performs meta-analysis across entity-specific insights.", "parameters": { "entity_insights": {"type": "object", "description": "Dictionary mapping entities to their insights."}, "prompt": {"type": "string", "description": "The original research prompt."} }, }, "draft_research_plan": { "function": tool_draft_research_plan, "description": "Creates a detailed research plan.", "parameters": { "prompt": {"type": "string", "description": "The research question/prompt."}, "entities": {"type": "array", "description": "Key entities to investigate."}, "focus_areas": {"type": "array", "description": "Additional areas to focus on."} } }, "search_patents": { "function": tool_search_patents, "description": "Searches patent databases globally", "parameters": { "query": {"type": "string", "description": "Patent search query"}, "max_results": {"type": "integer", "description": "Maximum number of patents to return"} } }, "search_clinical_trials": { "function": tool_search_clinical_trials, "description": "Search ClinicalTrials.gov and WHO ICTRP", "parameters": { "query": {"type": "string", "description": "Search query for ClinicalTrials.gov and WHO ICTRP"}, "max_results": {"type": "integer", "description": "Maximum number of results to return"} } }, "search_datasets": { "function": tool_search_datasets, "description": "Search academic datasets from repositories like Kaggle, UCI, etc.", "parameters": { "query": {"type": "string", "description": "Search query for academic datasets"}, "max_results": {"type": "integer", "description": "Maximum number of results to return"} } }, "search_conferences": { "function": tool_search_conferences, "description": "Search major conference proceedings", "parameters": { "query": {"type": "string", "description": "Search query for conference proceedings"}, "max_results": {"type": "integer", "description": "Maximum number of results to return"} } } } } def create_prompt(task_description, user_input, available_tools, context): prompt = f"""{task_description} User Input: {user_input} Available Tools: """ for tool_name, tool_data in available_tools.items(): prompt += f"- {tool_name}: {tool_data['description']}\n" prompt += " Parameters:\n" for param_name, param_data in tool_data["parameters"].items(): prompt += f" - {param_name} ({param_data['type']}): {param_data['description']}\n" recent_context = context[-MAX_CONTEXT_ITEMS:] if len(context) > MAX_CONTEXT_ITEMS else context prompt += "\nContext (most recent items):\n" for item in recent_context: prompt += f"- {item}\n" prompt += """ content_copy download Use code with caution. Instructions: Select the BEST tool and parameters for the current research stage. Output valid JSON. If no tool is appropriate, respond with {}. Only use provided tools. Be strategic about which tool to use next based on the research progress so far. You MUST be methodical. Think step-by-step: Plan: If it's the very beginning, extract key entities, identify focus areas, and then draft a research plan. Search: Use a variety of search tools. Start with broad searches, then narrow down. Use specific search tools (arXiv, PubMed, Scholar) for relevant topics. Analyze: Reason deeply about search results, and critique your reasoning. Identify contradictions. Filter and use FAISS index for relevant information. Refine: If results are poor, generate better search queries. Adjust focus areas. Iterate: Repeat steps 2-4, focusing on different entities and aspects. Synthesize: Finally, summarize the findings, addressing contradictions. Example: {"tool": "search_web", "parameters": {"query": "Eiffel Tower location"}} Output: """ return prompt def deep_research(prompt): task_description = "You are an advanced research assistant, designed to be as comprehensive as possible. Use available tools iteratively, focus on different aspects, explore promising leads thoroughly, critically evaluate your findings, and build up a comprehensive understanding of the research topic. Utilize the FAISS index to avoid redundant searches and to build a persistent knowledge base." research_data = load_research_data() paper_summaries = load_paper_summaries() # Load paper summaries context = research_data.get('context', []) all_insights = research_data.get('all_insights', []) entity_specific_insights = research_data.get('entity_specific_insights', {}) intermediate_output = "" previous_queries = research_data.get('previous_queries', []) failed_queries = research_data.get('failed_queries', []) reasoning_context = research_data.get('reasoning_context', []) previous_critiques = research_data.get('previous_critiques', []) focus_areas = research_data.get('focus_areas', []) failed_areas = research_data.get('failed_areas', []) seen_snippets = set(research_data.get('seen_snippets', [])) contradictions = research_data.get('contradictions', []) research_session_id = research_data.get('research_session_id', str(uuid4())) global index if research_data: logger.info("Restoring FAISS Index from loaded data.") else: index.reset() logger.info("Initialized a fresh FAISS Index") key_entities_with_descriptions = tool_extract_key_entities(prompt=prompt) key_entities = [e.split(":")[0].strip() for e in key_entities_with_descriptions] # Extract just entity names if key_entities: context.append(f"Identified key entities: {key_entities}") intermediate_output += f"Identified key entities for focused research: {key_entities_with_descriptions}\n" yield "Identifying key entities... (Completed)" # Initialize progress tracking for each entity. entity_progress = {entity: {'queries': [], 'insights': []} for entity in key_entities} entity_progress['general'] = {'queries': [], 'insights': []} # For general, non-entity-specific searches for entity in key_entities + ['general']: if entity in research_data: # Load existing progress entity_progress[entity]['queries'] = research_data[entity]['queries'] entity_progress[entity]['insights'] = research_data[entity]['insights'] if not focus_areas: # Corrected placement: outside the loop initial_focus_areas = tool_identify_focus_areas(prompt=prompt) yield "Identifying initial focus areas...(Completed)" research_plan = tool_draft_research_plan(prompt=prompt, entities=key_entities, focus_areas=initial_focus_areas) yield "Drafting initial research plan...(Completed)" context.append(f"Initial Research Plan: {research_plan[:200]}...") # Add plan to context intermediate_output += f"Initial Research Plan:\n{research_plan}\n\n" focus_areas = initial_focus_areas for i in range(MAX_ITERATIONS): # Entity-focused iteration strategy if key_entities and i > 0: # Cycle through entities *after* initial setup entities_to_process = key_entities + ['general'] # Include 'general' for broad searches current_entity = entities_to_process[i % len(entities_to_process)] else: current_entity = 'general' # Start with general research. context.append(f"Current focus: {current_entity}") # FAISS Retrieval if i > 0: # Use FAISS *after* the first iteration (once we have data) faiss_results_indices = search_faiss_index(prompt if current_entity == 'general' else f"{prompt} {current_entity}") faiss_context = [] for idx in faiss_results_indices: if idx < len(all_insights): # Check index bounds faiss_context.append(f"Previously found insight: {all_insights[idx]}") if faiss_context: context.extend(faiss_context) # Add FAISS context intermediate_output += f"Iteration {i+1} - Retrieved {len(faiss_context)} relevant items from FAISS index.\n" if i == 0: #Initial broad search initial_query = tool_generate_search_query(prompt=prompt) yield f"Generating initial search query... (Iteration {i+1})" if initial_query: previous_queries.append(initial_query) entity_progress['general']['queries'].append(initial_query) with ThreadPoolExecutor(max_workers=5) as executor: futures = [ executor.submit(tool_search_web, query=initial_query, num_results=NUM_RESULTS), executor.submit(tool_search_arxiv, query=initial_query, max_results=5), executor.submit(tool_search_pubmed, query=initial_query, max_results=5), executor.submit(tool_search_wikipedia, query=initial_query, max_results=3), executor.submit(tool_search_scholar, query=initial_query, max_results=5) ] search_results = [] for future in as_completed(futures): search_results.extend(future.result()) yield f"Performing initial searches... (Iteration {i+1})" filtered_search_results = filter_results(search_results, prompt) if filtered_search_results: context.append(f"Initial Search Results: {len(filtered_search_results)} items found") reasoning_output = tool_reason(prompt, filtered_search_results) yield f"Reasoning about initial search results... (Iteration {i+1})" if reasoning_output: all_insights.append(reasoning_output) entity_progress['general']['insights'].append(reasoning_output) reasoning_context.append(reasoning_output) context.append(f"Initial Reasoning: {reasoning_output[:200]}...") add_to_faiss_index(reasoning_output) else: failed_queries.append(initial_query) context.append(f"Initial query yielded no relevant results: {initial_query}") elif current_entity != 'general': entity_query = tool_generate_search_query( prompt=f"{prompt} focusing specifically on {current_entity}", previous_queries=entity_progress[current_entity]['queries'], focus_areas=focus_areas ) yield f"Generating search query for entity: {current_entity}... (Iteration {i+1})" if entity_query: previous_queries.append(entity_query) entity_progress[current_entity]['queries'].append(entity_query) with ThreadPoolExecutor(max_workers=5) as executor: futures = [ executor.submit(tool_search_web, query=entity_query, num_results=NUM_RESULTS//2), executor.submit(tool_search_arxiv, query=entity_query, max_results=3), executor.submit(tool_search_pubmed, query=entity_query, max_results=3), executor.submit(tool_search_wikipedia, query=entity_query, max_results=2), executor.submit(tool_search_scholar, query=entity_query, max_results=3) ] search_results = [] for future in as_completed(futures): search_results.extend(future.result()) yield f"Searching for information on entity: {current_entity}... (Iteration {i+1})" filtered_search_results = filter_results(search_results, f"{prompt} {current_entity}", previous_snippets=seen_snippets) # Pass existing snippets if filtered_search_results: context.append(f"Entity Search for {current_entity}: {len(filtered_search_results)} results") entity_reasoning = tool_reason( prompt=f"{prompt} focusing on {current_entity}", search_results=filtered_search_results, reasoning_context=entity_progress[current_entity]['insights'], # Use entity-specific context focus_areas=focus_areas ) yield f"Reasoning about entity: {current_entity}... (Iteration {i+1})" if entity_reasoning: all_insights.append(entity_reasoning) entity_progress[current_entity]['insights'].append(entity_reasoning) if current_entity not in entity_specific_insights: entity_specific_insights[current_entity] = [] entity_specific_insights[current_entity].append(entity_reasoning) context.append(f"Reasoning about {current_entity}: {entity_reasoning[:200]}...") add_to_faiss_index(entity_reasoning) else: failed_queries.append(entity_query) context.append(f"Entity query for {current_entity} yielded no relevant results") llm_prompt = create_prompt(task_description, prompt, tools, context) llm_response = hf_inference(MAIN_LLM_MODEL, llm_prompt, stream=True) # Use streaming if isinstance(llm_response, dict) and "error" in llm_response: intermediate_output += f"LLM Error: {llm_response['error']}\n" yield f"LLM Error (Iteration {i+1}): {llm_response['error']}" # Display error in output continue # Process streaming response response_text = "" try: for chunk in llm_response: if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content: response_text += chunk.choices[0].delta.content yield f"Iteration {i+1} - Thinking... {response_text}" # Real time output except Exception as e: intermediate_output += f"Streaming Error: {str(e)}\n" yield f"Streaming Error (Iteration {i+1}): {str(e)}" #Error continue try: response_json = json.loads(response_text) # Parse the JSON response. intermediate_output += f"Iteration {i+1} - Focus: {current_entity} - Action: {response_text}\n" except json.JSONDecodeError: intermediate_output += f"Iteration {i+1} - LLM Response (Invalid JSON): {response_text[:100]}...\n" context.append(f"Invalid JSON: {response_text[:100]}...") # Add invalid JSON to context continue tool_name = response_json.get("tool") parameters = response_json.get("parameters", {}) if not tool_name: #LLM didn't return a tool. End the process if we are past halfway. if all_insights: if i > MAX_ITERATIONS // 2: break continue if tool_name not in tools: context.append(f"Invalid tool: {tool_name}") intermediate_output += f"Iteration {i + 1} - Invalid tool chosen: {tool_name}\n" continue tool = tools[tool_name] try: intermediate_output += f"Iteration {i+1} - Executing: {tool_name}, Key params: {str(parameters)[:100]}...\n" if tool_name == "generate_search_query": parameters['previous_queries'] = previous_queries parameters['failed_queries'] = failed_queries parameters['focus_areas'] = focus_areas result = tool["function"](**parameters) yield f"Iteration {i+1} - Generated search query: {result}" if current_entity != 'general': entity_progress[current_entity]['queries'].append(result) # Add entity-specific previous_queries.append(result) elif tool_name in ["search_web", "search_arxiv", "search_pubmed", "search_wikipedia", "search_scholar"]: result = tool["function"](**parameters) search_prompt = prompt if current_entity != 'general': search_prompt = f"{prompt} focusing on {current_entity}" filtered_result = filter_results(result, search_prompt, previous_snippets=seen_snippets) result = filtered_result # Work with filtered results if not result and 'query' in parameters: # Add query to failures if nothing returned. failed_queries.append(parameters['query']) elif tool_name == "reason": # Ensure correct reasoning context is passed. if current_entity != 'general' and 'reasoning_context' not in parameters: parameters['reasoning_context'] = entity_progress[current_entity]['insights'] elif 'reasoning_context' not in parameters: parameters['reasoning_context'] = reasoning_context[:] if 'prompt' not in parameters: if current_entity != 'general': parameters['prompt'] = f"{prompt} focusing on {current_entity}" else: parameters['prompt'] = prompt if 'search_results' not in parameters: parameters['search_results'] = [] #Avoid errors if no search results. if 'focus_areas' not in parameters and focus_areas: # Avoid overwriting focus_areas if already set parameters['focus_areas'] = focus_areas result = tool["function"](**parameters) yield f"Iteration {i+1} - Reasoning about information..." if current_entity != 'general': entity_progress[current_entity]['insights'].append(result) if current_entity not in entity_specific_insights: entity_specific_insights[current_entity] = [] entity_specific_insights[current_entity].append(result) else: reasoning_context.append(result) #Add to general context. add_to_faiss_index(result) all_insights.append(result) elif tool_name == "critique_reasoning": if 'previous_critiques' not in parameters: #Pass in the previous critiques. parameters['previous_critiques'] = previous_critiques if all_insights: if 'reasoning_output' not in parameters: parameters['reasoning_output'] = all_insights[-1] #Critique the most recent insight. if 'prompt' not in parameters: parameters['prompt'] = prompt result = tool["function"](**parameters) yield f"Iteration {i+1} - Critiquing reasoning..." previous_critiques.append(result) context.append(f"Critique: {result[:200]}...") else: result = "No reasoning to critique yet." elif tool_name == "identify_contradictions": result = tool["function"](**parameters) yield f"Iteration {i+1} - Identifying contradictions..." if result: contradictions = result # Keep track of contradictions. context.append(f"Identified contradictions: {result}") elif tool_name == "identify_focus_areas": if 'failed_areas' not in parameters: parameters['failed_areas'] = failed_areas result = tool["function"](**parameters) yield f"Iteration {i+1} - Identifying focus areas..." if result: old_focus = set(focus_areas) focus_areas = result # Update focus areas failed_areas.extend([area for area in old_focus if area not in result]) #Track failed areas context.append(f"New focus areas: {result}") elif tool_name == "extract_article": result = tool["function"](**parameters) yield f"Iteration {i+1} - Extracting article content..." if result: context.append(f"Extracted article content from {parameters['url']}: {result[:200]}...") # Reason specifically about the extracted article. reasoning_about_article = tool_reason(prompt=prompt, search_results=[{"title": "Extracted Article", "snippet": result, "url": parameters['url']}]) if reasoning_about_article: all_insights.append(reasoning_about_article) add_to_faiss_index(reasoning_about_article) elif tool_name == "summarize_paper": result = tool["function"](**parameters) yield f"Iteration {i+1} - Summarizing paper..." if result: paper_summaries[parameters['paper_text'][:100]] = result # Store by a snippet of the text save_paper_summaries(paper_summaries) context.append(f"Summarized paper: {result[:200]}...") add_to_faiss_index(result) # Add the summary itself to FAISS. all_insights.append(result) #Add summary to insights for later summarization. elif tool_name == "meta_analyze": if 'entity_insights' not in parameters: parameters['entity_insights'] = entity_specific_insights if 'prompt' not in parameters: parameters['prompt'] = prompt result = tool["function"](**parameters) yield f"Iteration {i+1} - Performing meta-analysis..." if result: all_insights.append(result) # Add meta-analysis to overall insights. context.append(f"Meta-analysis across entities: {result[:200]}...") add_to_faiss_index(result) elif tool_name == "draft_research_plan": result = "Research plan already generated." # Avoid re-generating. else: result = tool["function"](**parameters) result_str = str(result) if len(result_str) > 500: result_str = result_str[:500] + "..." intermediate_output += f"Iteration {i+1} - Result: {result_str}\n" # Add tool use to context, limit context length result_context = result_str if len(result_str) > 300: result_context = result_str[:300] + "..." context.append(f"Used: {tool_name}, Result: {result_context}") except Exception as e: logger.error(f"Error with {tool_name}: {str(e)}") context.append(f"Error with {tool_name}: {str(e)}") intermediate_output += f"Iteration {i+1} - Error: {str(e)}\n" continue #Save data research_data = { 'context': context, 'all_insights': all_insights, 'entity_specific_insights': entity_specific_insights, 'previous_queries': previous_queries, 'failed_queries': failed_queries, 'reasoning_context': reasoning_context, 'previous_critiques': previous_critiques, 'focus_areas': focus_areas, 'failed_areas': failed_areas, 'seen_snippets': list(seen_snippets), 'contradictions': contradictions, 'research_session_id': research_session_id } for entity in entity_progress: research_data[entity] = entity_progress[entity] #save the individual entity save_research_data(research_data, index) # Perform meta-analysis *before* final summarization, if we have enough entity-specific insights. if len(entity_specific_insights) > 1 and len(all_insights) > 2: meta_analysis = tool_meta_analyze(entity_insights=entity_specific_insights, prompt=prompt) if meta_analysis: all_insights.append(meta_analysis) intermediate_output += f"Final Meta-Analysis: {meta_analysis[:500]}...\n" add_to_faiss_index(meta_analysis) # Add to FAISS if all_insights: final_result = tool_summarize(all_insights, prompt, contradictions) # Summarize all insights. else: final_result = "Could not find meaningful information despite multiple attempts." full_output = f"**Research Prompt:** {prompt}\n\n" if key_entities_with_descriptions: full_output += f"**Key Entities Identified:**\n" for entity in key_entities_with_descriptions: full_output += f"- {entity}\n" full_output += "\n" full_output += "**Research Process:**\n" + intermediate_output + "\n" if contradictions: full_output += "**Contradictions Identified:**\n" for i, contradiction in enumerate(contradictions, 1): full_output += f"{i}. {contradiction}\n" full_output += "\n" full_output += f"**Final Analysis:**\n{final_result}\n\n" full_output += f"Research Session ID: {research_session_id}\n" full_output += f"Completed at: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n" full_output += f"Total iterations: {i+1}\n" full_output += f"Total insights generated: {len(all_insights)}\n" yield full_output # Final output content_copy download Use code with caution. custom_css = """ /* Modern Research Interface */ .research-container { display: grid; grid-template-columns: 2fr 1fr; gap: 20px; padding: 20px; background: #1a1a1a; } .main-content { background: #2d2d2d; border-radius: 10px; padding: 20px; } .sidebar { background: #2d2d2d; border-radius: 10px; padding: 20px; } /* Progress Tracking */ .progress-container { background: #333; border-radius: 8px; padding: 15px; margin-bottom: 15px; } .tool-indicator { display: flex; align-items: center; gap: 10px; padding: 8px; background: #444; border-radius: 5px; margin-bottom: 8px; } .tool-icon { width: 24px; height: 24px; } .tool-name { color: #4CAF50; font-weight: bold; } /* Enhanced Output Formatting */ .research-output { font-family: 'Inter', sans-serif; line-height: 1.6; } .research-output h2 { color: #4CAF50; border-bottom: 2px solid #4CAF50; padding-bottom: 5px; } .research-output code { background: #333; padding: 2px 6px; border-radius: 4px; } /* Statistics Panel */ .stats-panel { background: #333; border-radius: 8px; padding: 15px; margin-top: 15px; } .stat-item { display: flex; justify-content: space-between; padding: 8px 0; border-bottom: 1px solid #444; } """ iface = gr.Interface( fn=deep_research, inputs=[ gr.Textbox(lines=5, placeholder="Enter your research question...", label="Research Question"), gr.Dropdown( choices=["Quick", "Standard", "Comprehensive", "Exhaustive"], label="Research Depth", value="Standard" ), gr.CheckboxGroup( choices=["Academic Papers", "Patents", "News", "Clinical Trials", "Datasets"], label="Source Types", value=["Academic Papers", "News"] ), gr.Slider( minimum=1, maximum=24, value=2, label="Time Limit (hours)" ) ], outputs=[ gr.Markdown(label="Research Results", elem_classes=["research-output"]), gr.JSON(label="Progress Statistics", elem_classes=["stats-panel"]), gr.HTML(label="Active Tools", elem_classes=["tool-indicator"]) ], title="Advanced Research Institution Assistant", description="""Enterprise-grade research system with real-time progress tracking, comprehensive source coverage, and advanced analysis capabilities.""", theme=gr.themes.Base(primary_hue="green"), css=custom_css ) if name == "main": iface.launch(share=False)