# -*- coding: utf-8 -*- # @Author : xuelun import cv2 import torch import numpy as np # ------------ # DATA TOOLS # ------------ def imread_gray(path, augment_fn=None): if augment_fn is None: image = cv2.imread(str(path), cv2.IMREAD_GRAYSCALE) else: image = cv2.imread(str(path), cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = augment_fn(image) image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) return image # (h, w) def imread_color(path, augment_fn=None): if augment_fn is None: image = cv2.imread(str(path), cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) else: image = cv2.imread(str(path), cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = augment_fn(image) return image # (h, w) def get_resized_wh(w, h, resize=None): if resize is not None: # resize the longer edge scale = resize / max(h, w) w_new, h_new = int(round(w*scale)), int(round(h*scale)) else: w_new, h_new = w, h return w_new, h_new def get_divisible_wh(w, h, df=None): if df is not None: w_new = max((w // df), 1) * df h_new = max((h // df), 1) * df # resize = int(max(max(w, h) // df, 1) * df) # w_new, h_new = get_resized_wh(w, h, resize) # scale = resize / x # w_new, h_new = map(lambda x: int(max(x // df, 1) * df), [w, h]) else: w_new, h_new = w, h return w_new, h_new def pad_bottom_right(inp, pad_size, ret_mask=False): assert isinstance(pad_size, int) and pad_size >= max(inp.shape[-2:]), f"{pad_size} < {max(inp.shape[-2:])}" mask = None if inp.ndim == 2: padded = np.zeros((pad_size, pad_size), dtype=inp.dtype) padded[:inp.shape[0], :inp.shape[1]] = inp elif inp.ndim == 3: padded = np.zeros((pad_size, pad_size, inp.shape[-1]), dtype=inp.dtype) padded[:inp.shape[0], :inp.shape[1]] = inp else: raise NotImplementedError() if ret_mask: mask = np.zeros((pad_size, pad_size), dtype=bool) mask[:inp.shape[0], :inp.shape[1]] = True return padded, mask def split(n, k): d, r = divmod(n, k) return [d + 1] * r + [d] * (k - r) def read_images(path, max_resize, df, padding, augment_fn=None, image=None): """ Args: path: string max_resize (int): max image size after resied df (int, optional): image size division factor. NOTE: this will change the final image size after img_resize padding (bool): If set to 'True', zero-pad resized images to squared size. augment_fn (callable, optional): augments images with pre-defined visual effects image: RGB image Returns: image (torch.tensor): (1, h, w) mask (torch.tensor): (h, w) scale (torch.tensor): [w/w_new, h/h_new] """ # read image assert max_resize is not None image = imread_color(path, augment_fn) if image is None else image # (w,h,3) image is RGB gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # resize image w, h = image.shape[1], image.shape[0] if max(w, h) > max_resize: w_new, h_new = get_resized_wh(w, h, max_resize) # make max(w, h) to max_size else: w_new, h_new = w, h w_new, h_new = get_divisible_wh(w_new, h_new, df) # make image divided by df and must <= max_size image = cv2.resize(image, (w_new, h_new)) # (w',h',3) gray = cv2.resize(gray, (w_new, h_new)) # (w',h',3) scale = torch.tensor([w / w_new, h / h_new], dtype=torch.float) # padding mask = None if padding: image, _ = pad_bottom_right(image, max_resize, ret_mask=False) gray, mask = pad_bottom_right(gray, max_resize, ret_mask=True) mask = torch.from_numpy(mask) gray = torch.from_numpy(gray).float()[None] / 255 # (1,h,w) image = torch.from_numpy(image).float() / 255 # (h,w,3) image = image.permute(2,0,1) # (3,h,w) resize = [h_new, w_new] return gray, image, scale, resize, mask