import numpy as np import pycolmap def to_homogeneous(p): return np.pad(p, ((0, 0),) * (p.ndim - 1) + ((0, 1),), constant_values=1) def vector_to_cross_product_matrix(v): return np.array([ [0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0] ]) def compute_epipolar_errors(qvec_r2t, tvec_r2t, p2d_r, p2d_t): T_r2t = pose_matrix_from_qvec_tvec(qvec_r2t, tvec_r2t) # Compute errors in normalized plane to avoid distortion. E = vector_to_cross_product_matrix(T_r2t[: 3, -1]) @ T_r2t[: 3, : 3] l2d_r2t = (E @ to_homogeneous(p2d_r).T).T l2d_t2r = (E.T @ to_homogeneous(p2d_t).T).T errors_r = ( np.abs(np.sum(to_homogeneous(p2d_r) * l2d_t2r, axis=1)) / np.linalg.norm(l2d_t2r[:, : 2], axis=1)) errors_t = ( np.abs(np.sum(to_homogeneous(p2d_t) * l2d_r2t, axis=1)) / np.linalg.norm(l2d_r2t[:, : 2], axis=1)) return E, errors_r, errors_t def pose_matrix_from_qvec_tvec(qvec, tvec): pose = np.zeros((4, 4)) pose[: 3, : 3] = pycolmap.qvec_to_rotmat(qvec) pose[: 3, -1] = tvec pose[-1, -1] = 1 return pose