# -*- coding: utf-8 -*- # @Author : xuelun import os import cv2 import torch import random import numpy as np import torch.nn.functional as F from tqdm import tqdm from os import listdir from pathlib import Path from functools import reduce from datetime import datetime from argparse import ArgumentParser from os.path import join, isdir, exists from datasets.dataset import RGBDDataset from datasets.walk import cfg from datasets.walk.utils import covision, intersected, read_images from datasets.walk.utils import fast_make_matching_robust_fitting_figure parse_mtd = lambda name: name.parent.stem.split()[1] parse_skip = lambda name: int(str(name).split(os.sep)[-1].rpartition('SP')[-1].strip().rpartition(' ')[0]) parse_resize = lambda name: str(name).split(os.sep)[-2].rpartition('[R]')[-1].rpartition('[S]')[0].strip() create_table = lambda x, y, w: dict(zip(np.round(x) + np.round(y) * w, list(range(len(x))))) class WALKDataset(RGBDDataset): def __init__(self, root_dir, # data root dit npz_root, # data info, like, overlap, image_path, depth_path seq_name, # current sequence mode, # train or val or test max_resize, # max edge after resize df, # general is 8 for ResNet w/ pre 3-layers padding, # padding image for batch training augment_fn, # augmentation function max_samples, # max sample in current sequence **kwargs): super().__init__() self.mode = mode self.root_dir = root_dir self.scene_path = join(root_dir, seq_name) pseudo_labels = kwargs.get('PSEUDO_LABELS', None) npz_paths = [join(npz_root, x) for x in pseudo_labels] npz_paths = [x for x in npz_paths if exists(x)] npz_names = [{d[:int(d.split()[-1])]: Path(path, d) for d in listdir(path) if isdir(join(path, d))} for path in npz_paths] npz_paths = [name_dict[seq_name] for name_dict in npz_names if seq_name in name_dict.keys()] self.propagating = kwargs.get('PROPAGATING', False) if self.propagating and len(npz_paths) != 24: print(f'{seq_name} has {len(npz_paths)} pseudo labels, but 24 are expected.') exit(0) self.scale = 1 / df self.scene_id = seq_name self.skips = sorted(list({parse_skip(name) for name in npz_paths})) self.resizes = sorted(list({parse_resize(name) for name in npz_paths})) self.methods = sorted(list({parse_mtd(name) for name in npz_paths}))[::-1] self.min_final_matches = kwargs.get('MIN_FINAL_MATCHES', None) self.min_filter_matches = kwargs.get('MIN_FILTER_MATCHES', None) pproot = kwargs.get('PROPAGATE_ROOT', None) ppid = ' '.join(self.methods + list(map(str, self.skips)) + self.resizes + [f'FM {self.min_filter_matches}', f'PM {self.min_final_matches}']) self.pproot = join(pproot, ppid, seq_name) if not self.propagating: assert exists(self.pproot) elif not exists(self.pproot): os.makedirs(self.pproot, exist_ok=True) image_root = kwargs.get('VIDEO_IMAGE_ROOT', None) self.image_root = join(image_root, seq_name) if not exists(self.image_root): os.makedirs(self.image_root, exist_ok=True) self.step = kwargs.get('STEP', None) self.pix_thr = kwargs.get('PIX_THR', None) self.fix_matches = kwargs.get('FIX_MATCHES', None) source_root = kwargs.get('SOURCE_ROOT', None) scap = cv2.VideoCapture(join(source_root, seq_name + '.mp4')) self.pseudo_size = [int(scap.get(3)), int(scap.get(4))] source_fps = int(scap.get(5)) video_path = join(root_dir, seq_name + '.mp4') vcap = cv2.VideoCapture(video_path) self.frame_size = [int(vcap.get(3)), int(vcap.get(4))] if self.propagating: nums = {skip: [] for skip in self.skips} idxs = {skip: [] for skip in self.skips} self.path = {skip: [] for skip in self.skips} for npz_path in npz_paths: skip = parse_skip(npz_path) assert exists(npz_path / 'nums.npy') with open(npz_path / 'nums.npy', 'rb') as f: npz = np.load(f) nums[skip].append(npz) assert exists(npz_path / 'idxs.npy') with open(npz_path / 'idxs.npy', 'rb') as f: npz = np.load(f) idxs[skip].append(npz) self.path[skip].append(npz_path) ids1 = reduce(intersected, [idxs[nums > self.min_filter_matches] for nums, idxs in zip(nums[self.skips[-1]], idxs[self.skips[-1]])]) continue1 = np.array([x in ids1[:, 0] for x in (ids1[:, 0] + self.skips[-1] * 1)]) ids2 = reduce(intersected, idxs[self.skips[-2]]) continue2 = np.array([x in ids2[:, 0] for x in ids1[:, 0]]) continue2 = continue2 & np.array([x in ids2[:, 0] for x in (ids1[:, 0] + self.skips[-2] * 1)]) ids3 = reduce(intersected, idxs[self.skips[-3]]) continue3 = np.array([x in ids3[:, 0] for x in ids1[:, 0]]) continue3 = continue3 & np.array([x in ids3[:, 0] for x in (ids1[:, 0] + self.skips[-3] * 1)]) continue3 = continue3 & np.array([x in ids3[:, 0] for x in (ids1[:, 0] + self.skips[-3] * 2)]) continue3 = continue3 & np.array([x in ids3[:, 0] for x in (ids1[:, 0] + self.skips[-3] * 3)]) continues = continue1 & continue2 & continue3 ids = ids1[continues] pair_ids = np.array(list(zip(ids[:, 0], np.clip(ids[:, 0]+self.step*self.skips[-1], a_min=ids[0, 0], a_max=ids[-1, 1])))) if self.step > 0 else ids pair_ids = pair_ids[(pair_ids[:, 1] - pair_ids[:, 0]) >= self.skips[-1]] else: pair_ids = np.array([tuple(map(int, x.split('.npy')[0].split('_'))) for x in os.listdir(self.pproot) if x.endswith('.npy')]) if (max_samples > 0) and (len(pair_ids) > max_samples): random_state = random.getstate() np_random_state = np.random.get_state() random.seed(3407) np.random.seed(3407) pair_ids = pair_ids[sorted(np.random.randint(len(pair_ids), size=max_samples))] random.setstate(random_state) np.random.set_state(np_random_state) # remove unvalid pairs from self.pproot/bad_pairs.txt pair_ids = set(map(tuple, pair_ids.tolist())) if self.propagating: assert not exists(join(self.pproot, 'bad_pairs.txt')) if exists(join(self.pproot, 'bad_pairs.txt')): with open(join(self.pproot, 'bad_pairs.txt'), 'r') as f: unvalid_pairs = set([tuple(map(int, line.split())) for line in f.readlines()]) self.unvalid_pairs_num = len(unvalid_pairs) if not self.propagating else 'N/A' pair_ids = pair_ids - unvalid_pairs self.valid_pairs_num = len(pair_ids) if not self.propagating else 'N/A' self.pair_ids = list(map(list, pair_ids)) # List[List[int, int]] # parameters for image resizing, padding and depthmap padding if mode == 'train': assert max_resize is not None self.df = df self.max_resize = max_resize self.padding = padding # for training LoFTR self.augment_fn = augment_fn if mode == 'train' else None def __len__(self): return len(self.pair_ids) def propagate(self, idx0, idx1, skips): """ Args: idx0: (int) index of the first frame idx1: (int) index of the second frame skips: (List) Returns: """ skip = skips[-1] # 40 indices = [skip * (i + 1) + idx0 for i in range((idx1 - idx0) // skip)] if (not indices) or (idx0 != indices[0]): indices = [idx0] + indices if idx1 != indices[-1]: indices = indices + [idx1] indices = list(zip(indices[:-1], indices[1:])) # [(N', 4), (N'', 4), ...] labels = [] ids = [idx0] while indices: pair = indices.pop(0) # (tuple) if pair[0] == pair[1]: break label = [] if (pair[-1] - pair[0]) == skip: tmp = self.dump(skip, pair) if len(tmp) > 0: label.append(tmp) # (ndarray) (N, 4) if skips[:-1]: _label_, id0, id1 = self.propagate(pair[0], pair[1], skips[:-1]) if (id0, id1) == pair: label.append(_label_) # (ndarray) (M, 4) if label: label = np.concatenate(label, axis=0) # (ndarray) (N+M, 4) labels.append(label) ids += [pair[1]] if len(labels) > 1: _labels_ = self.link(labels[0], labels[1]) if _labels_ is not None: labels = [_labels_] ids = [ids[0], ids[-1]] else: labels.pop(-1) ids.pop(-1) indices = [(pair[0], pair[1]-skips[0])] if len(labels) == 1 and len(ids) == 2: return labels[0], ids[0], ids[-1] else: return None, None, None def link(self, label0, label1): """ Args: label0: (ndarray) N x 4 label1: (ndarray) M x 4 Returns: (ndarray) (N', 4) """ # get keypoints in left, middle and right frame left_t0 = label0[:, :2] # (N, 2) mid_t0 = label0[:, 2:] # (N, 2) mid_t1 = label1[:, :2] # (M, 2) right_t1 = label1[:, 2:] # (M, 2) mid0_table = create_table(mid_t0[:, 0], mid_t0[:, 1], self.pseudo_size[0]) mid1_table = create_table(mid_t1[:, 0], mid_t1[:, 1], self.pseudo_size[0]) keys = {*mid0_table} & {*mid1_table} i = np.array([mid0_table[k] for k in keys]) j = np.array([mid1_table[k] for k in keys]) # remove repeat matches ij = np.unique(np.vstack((i, j)), axis=1) if ij.shape[1] < self.min_final_matches: return None # get the new pseudo labels pseudo_label = np.concatenate([left_t0[ij[0]], right_t1[ij[1]]], axis=1) # (N', 4) return pseudo_label def dump(self, skip, pair): """ Args: skip: pair: Returns: pseudo_label (N, 4) """ labels = [] for path in self.path[skip]: p = path / '{}.npy'.format(str(np.array(pair))) if exists(p): with open(p, 'rb') as f: labels.append(np.load(f)) if len(labels) > 0: labels = np.concatenate(labels, axis=0).astype(np.float32) # (N, 4) return labels def __getitem__(self, idx): idx0, idx1 = self.pair_ids[idx] pppath = join(self.pproot, '{}_{}.npy'.format(idx0, idx1)) if self.propagating and exists(pppath): return None # check propagation if not self.propagating: assert exists(pppath), f'{pppath} does not exist' if not exists(pppath): pseudo_label, idx0, idx1 = self.propagate(idx0, idx1, self.skips) if idx1 - idx0 == self.skips[-1]: pseudo_label, idx0, idx1 = self.propagate(idx0, idx1, self.skips[:-1]) if idx1 - idx0 == self.skips[-2]: pseudo_label, idx0, idx1 = self.propagate(idx0, idx1, self.skips[:-2]) if pseudo_label is None: _idx0_, _idx1_ = self.pair_ids[idx] with open(join(self.pproot, 'bad_pairs.txt'), 'a') as f: f.write('{} {}\n'.format(_idx0_, _idx1_)) return None _, mask = cv2.findFundamentalMat(pseudo_label[:, :2], pseudo_label[:, 2:], cv2.USAC_MAGSAC, ransacReprojThreshold=1.0, confidence=0.999999, maxIters=1000) mask = mask.ravel() > 0 pseudo_label = pseudo_label[mask] if len(pseudo_label) < 64 or (idx1 - idx0) == self.skips[-3]: _idx0_, _idx1_ = self.pair_ids[idx] with open(join(self.pproot, 'bad_pairs.txt'), 'a') as f: f.write('{} {}\n'.format(_idx0_, _idx1_)) return None else: with open(pppath, 'wb') as f: np.save(f, np.concatenate((np.array([[idx0, idx1, idx0, idx1]]).astype(np.float32), pseudo_label), axis=0)) else: with open(pppath, 'rb') as f: pseudo_label = np.load(f) idx0, idx1 = pseudo_label[0].astype(np.int64)[:2].tolist() pseudo_label = pseudo_label[1:] if self.propagating: return None pseudo_label *= (np.array(self.frame_size * 2) / np.array(self.pseudo_size * 2))[None] # get image img_path0 = join(self.image_root, '{}.png'.format(idx0)) color0 = cv2.imread(img_path0) img_path1 = join(self.image_root, '{}.png'.format(idx1)) color1 = cv2.imread(img_path1) width0, height0 = self.frame_size width1, height1 = self.frame_size left_upper_cornor = pseudo_label[:, :2].min(axis=0) left_low_corner = pseudo_label[:, :2].max(axis=0) left_corner = np.concatenate([left_upper_cornor, left_low_corner], axis=0) right_upper_cornor = pseudo_label[:, 2:].min(axis=0) right_low_corner = pseudo_label[:, 2:].max(axis=0) right_corner = np.concatenate([right_upper_cornor, right_low_corner], axis=0) # Prepare variables image0, color0, scale0, rands0, offset0, hlip0, vflip0, resize0, mask0 = read_images( None, self.max_resize, self.df, self.padding, np.random.choice([self.augment_fn, None], p=[0.5, 0.5]), aug_prob=1.0, is_left=True, upper_cornor=left_corner, read_size=self.frame_size, image=color0) image1, color1, scale1, rands1, offset1, hlip1, vflip1, resize1, mask1 = read_images( None, self.max_resize, self.df, self.padding, np.random.choice([self.augment_fn, None], p=[0.5, 0.5]), aug_prob=1.0, is_left=False, upper_cornor=right_corner, read_size=self.frame_size, image=color1) # warp keypoints by scale, offset and hlip pseudo_label = torch.tensor(pseudo_label, dtype=torch.float) left = (pseudo_label[:, :2] / scale0[None] - offset0[None]) left[:, 0] = resize0[1] - 1 - left[:, 0] if hlip0 else left[:, 0] left[:, 1] = resize0[0] - 1 - left[:, 1] if vflip0 else left[:, 1] right = (pseudo_label[:, 2:] / scale1[None] - offset1[None]) right[:, 0] = resize1[1] - 1 - right[:, 0] if hlip1 else right[:, 0] right[:, 1] = resize1[0] - 1 - right[:, 1] if vflip1 else right[:, 1] mask = (left[:, 0] >= 0) & (left[:, 0]*self.scale <= (resize0[1]*self.scale - 1)) & \ (left[:, 1] >= 0) & (left[:, 1]*self.scale <= (resize0[0]*self.scale - 1)) & \ (right[:, 0] >= 0) & (right[:, 0]*self.scale <= (resize1[1]*self.scale - 1)) & \ (right[:, 1] >= 0) & (right[:, 1]*self.scale <= (resize1[0]*self.scale - 1)) left, right = left[mask], right[mask] pseudo_label = torch.cat([left, right], dim=1) pseudo_label = torch.unique(pseudo_label, dim=0) fix_pseudo_label = torch.zeros(self.fix_matches, 4, dtype=pseudo_label.dtype) fix_pseudo_label[:len(pseudo_label)] = pseudo_label # read image size imsize0 = torch.tensor([height0, width0], dtype=torch.long) imsize1 = torch.tensor([height1, width1], dtype=torch.long) resize0 = torch.tensor(resize0, dtype=torch.long) resize1 = torch.tensor(resize1, dtype=torch.long) data = { # image 0 'image0': image0, 'color0': color0, 'imsize0': imsize0, 'offset0': offset0, 'resize0': resize0, 'depth0': torch.ones((1600, 1600), dtype=torch.float), 'hflip0': hlip0, 'vflip0': vflip0, # image 1 'image1': image1, 'color1': color1, 'imsize1': imsize1, 'offset1': offset1, 'resize1': resize1, 'depth1': torch.ones((1600, 1600), dtype=torch.float), 'hflip1': hlip1, 'vflip1': vflip1, # image transform 'pseudo_labels': fix_pseudo_label, 'gt': False, 'zs': True, # image transform 'T_0to1': torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=torch.float), 'T_1to0': torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=torch.float), 'K0': torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=torch.float), 'K1': torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=torch.float), # pair information 'scale0': scale0 / scale0, 'scale1': scale1 / scale1, 'rands0': rands0, 'rands1': rands1, 'dataset_name': 'WALK', 'scene_id': '{:30}'.format(self.scene_id[:min(30, len(self.scene_id)-1)]), 'pair_id': f'{idx0}-{idx1}', 'pair_names': ('{}.png'.format(idx0), '{}.png'.format(idx1)), 'covisible0': covision(pseudo_label[:, :2], resize0).item(), 'covisible1': covision(pseudo_label[:, 2:], resize1).item(), } item = super(WALKDataset, self).__getitem__(idx) item.update(data) data = item if mask0 is not None: if self.scale: # noinspection PyArgumentList [ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(), scale_factor=self.scale, mode='nearest', recompute_scale_factor=False)[0].bool() data.update({'mask0': ts_mask_0, 'mask1': ts_mask_1}) data.update({'mask0_i': mask0, 'mask1_i': mask1}) return data if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('seq_names', type=str, nargs='+') args = parser.parse_args() train_cfg = cfg.DATASET.TRAIN base_input = { 'df': 8, 'mode': 'train', 'augment_fn': None, 'max_resize': [1280, 720], 'padding': cfg.DATASET.TRAIN.PADDING, 'max_samples': cfg.DATASET.TRAIN.MAX_SAMPLES, 'min_overlap_score': cfg.DATASET.TRAIN.MIN_OVERLAP_SCORE, 'max_overlap_score': cfg.DATASET.TRAIN.MAX_OVERLAP_SCORE } cfg_input = { k: getattr(train_cfg, k) for k in [ 'DATA_ROOT', 'NPZ_ROOT', 'STEP', 'PIX_THR', 'FIX_MATCHES', 'SOURCE_ROOT', 'MAX_CANDIDATE_MATCHES', 'MIN_FINAL_MATCHES', 'MIN_FILTER_MATCHES', 'VIDEO_IMAGE_ROOT', 'PROPAGATE_ROOT', 'PSEUDO_LABELS' ] } if os.path.isfile(args.seq_names[0]): with open(args.seq_names[0], 'r') as f: seq_names = [line.strip() for line in f.readlines()] else: seq_names = args.seq_names for seq_name in seq_names: input_ = { **base_input, **cfg_input, 'root_dir': cfg_input['DATA_ROOT'], 'npz_root': cfg_input['NPZ_ROOT'], 'seq_name': seq_name } dataset = WALKDataset(**input_) random.seed(3407) np.random.seed(3407) samples = list(range(len(dataset))) num = 10 samples = random.sample(samples, num) for idx_ in tqdm(samples[:num], ncols=80, bar_format="{l_bar}{bar:3}{r_bar}", total=num, desc=f'[ {seq_name[:min(10, len(seq_name)-1)]:<10} ] [ {dataset.valid_pairs_num:<5} / {dataset.valid_pairs_num+dataset.unvalid_pairs_num:<5} ]',): data_ = dataset[idx_] if data_ is None: continue pseudo_labels_ = data_['pseudo_labels'] mask_ = pseudo_labels_.sum(dim=1) > 0 pseudo_label_ = pseudo_labels_[mask_].cpu().numpy() data_['mkpts0_f'] = pseudo_label_[:, :2] data_['mkpts1_f'] = pseudo_label_[:, 2:] data_['hw0_i'] = data_['image0'].shape[-2:] data_['hw1_i'] = data_['image1'].shape[-2:] data_['image0'] = data_['image0'][None] data_['image1'] = data_['image1'][None] data_['color0'] = data_['color0'][None] data_['color1'] = data_['color1'][None] idx0_, idx1_ = data_['pair_id'].split('-') idx0_, idx1_ = map(int, [idx0_, idx1_]) out = fast_make_matching_robust_fitting_figure(data_, transpose=True) save_dir = Path('dump/walk') / seq_name if not exists(save_dir): save_dir.mkdir(parents=True, exist_ok=True) cv2.imwrite(join(save_dir, '{:8d} [{}] {:8d} {:3d}.png'.format( idx0_, datetime.utcnow().strftime('%Y-%m-%d %H-%M-%S %f')[:-3], idx1_, idx1_ - idx0_ )), cv2.cvtColor(out, cv2.COLOR_RGB2BGR))