import os import sys import torch import numpy as np import math import cv2 from models.model import LiftFeatSPModel from models.interpolator import InterpolateSparse2d from utils.config import featureboost_config device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") MODEL_PATH = os.path.join(os.path.dirname(__file__), "../weights/LiftFeat.pth") class NonMaxSuppression(torch.nn.Module): def __init__(self, rep_thr=0.1, top_k=4096): super(NonMaxSuppression, self).__init__() self.max_filter = torch.nn.MaxPool2d(kernel_size=5, stride=1, padding=2) self.rep_thr = rep_thr self.top_k = top_k def NMS(self, x, threshold=0.05, kernel_size=5): B, _, H, W = x.shape pad = kernel_size // 2 local_max = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=pad)(x) pos = (x == local_max) & (x > threshold) pos_batched = [k.nonzero()[..., 1:].flip(-1) for k in pos] pad_val = max([len(x) for x in pos_batched]) pos = torch.zeros((B, pad_val, 2), dtype=torch.long, device=x.device) # Pad kpts and build (B, N, 2) tensor for b in range(len(pos_batched)): pos[b, : len(pos_batched[b]), :] = pos_batched[b] return pos def forward(self, score): pos = self.NMS(score, self.rep_thr) return pos def load_model(model, weight_path): pretrained_weights = torch.load(weight_path, map_location="cpu") model_keys = set(model.state_dict().keys()) pretrained_keys = set(pretrained_weights.keys()) missing_keys = model_keys - pretrained_keys unexpected_keys = pretrained_keys - model_keys # if missing_keys: # print("Missing keys in pretrained weights:", missing_keys) # else: # print("No missing keys in pretrained weights.") # if unexpected_keys: # print("Unexpected keys in pretrained weights:", unexpected_keys) # else: # print("No unexpected keys in pretrained weights.") if not missing_keys and not unexpected_keys: model.load_state_dict(pretrained_weights) print("load weight successfully.") else: model.load_state_dict(pretrained_weights, strict=False) # print("There were issues with the keys.") return model import torch.nn as nn class LiftFeat(nn.Module): def __init__(self, weight=MODEL_PATH, top_k=4096, detect_threshold=0.1): super().__init__() self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.net = LiftFeatSPModel(featureboost_config).to(self.device).eval() self.top_k = top_k self.sampler = InterpolateSparse2d("bicubic") self.net = load_model(self.net, weight) self.detector = NonMaxSuppression(rep_thr=detect_threshold) self.net = self.net.to(self.device) self.detector = self.detector.to(self.device) self.sampler = self.sampler.to(self.device) def image_preprocess(self, image: np.ndarray): H, W, C = image.shape[0], image.shape[1], image.shape[2] _H = math.ceil(H / 32) * 32 _W = math.ceil(W / 32) * 32 pad_h = _H - H pad_w = _W - W image = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, None, (0, 0, 0)) pad_info = [0, pad_h, 0, pad_w] if len(image.shape) == 3: image = image[None, ...] image = torch.tensor(image).permute(0, 3, 1, 2) / 255 image = image.to(device) return image, pad_info @torch.inference_mode() def extract(self, image: np.ndarray): image, pad_info = self.image_preprocess(image) B, _, _H1, _W1 = image.shape M1, K1, D1 = self.net.forward1(image) refine_M = self.net.forward2(M1, K1, D1) refine_M = refine_M.reshape(M1.shape[0], M1.shape[2], M1.shape[3], -1).permute(0, 3, 1, 2) refine_M = torch.nn.functional.normalize(refine_M, 2, dim=1) descs_map = refine_M scores = torch.softmax(K1, dim=1)[:, :64] heatmap = scores.permute(0, 2, 3, 1).reshape(scores.shape[0], scores.shape[2], scores.shape[3], 8, 8) heatmap = heatmap.permute(0, 1, 3, 2, 4).reshape(scores.shape[0], 1, scores.shape[2] * 8, scores.shape[3] * 8) pos = self.detector(heatmap) kpts = pos.squeeze(0) mask_w = kpts[..., 0] < (_W1 - pad_info[-1]) kpts = kpts[mask_w] mask_h = kpts[..., 1] < (_H1 - pad_info[1]) kpts = kpts[mask_h] scores = self.sampler(heatmap, kpts.unsqueeze(0), _H1, _W1) scores = scores.squeeze(0).reshape(-1) descs = self.sampler(descs_map, kpts.unsqueeze(0), _H1, _W1) descs = torch.nn.functional.normalize(descs, p=2, dim=1) descs = descs.squeeze(0) return {"descriptors": descs, "keypoints": kpts, "scores": scores} def match_liftfeat(self, img1, img2, min_cossim=-1): # import pdb;pdb.set_trace() data1 = self.extract(img1) data2 = self.extract(img2) kpts1, feats1 = data1["keypoints"], data1["descriptors"] kpts2, feats2 = data2["keypoints"], data2["descriptors"] cossim = feats1 @ feats2.t() cossim_t = feats2 @ feats1.t() _, match12 = cossim.max(dim=1) _, match21 = cossim_t.max(dim=1) idx0 = torch.arange(len(match12), device=match12.device) mutual = match21[match12] == idx0 if min_cossim > 0: cossim, _ = cossim.max(dim=1) good = cossim > min_cossim idx0 = idx0[mutual & good] idx1 = match12[mutual & good] else: idx0 = idx0[mutual] idx1 = match12[mutual] mkpts1, mkpts2 = kpts1[idx0], kpts2[idx1] mkpts1, mkpts2 = mkpts1.cpu().numpy(), mkpts2.cpu().numpy() return mkpts1, mkpts2