import cv2 import os from tqdm import tqdm import torch import numpy as np import sys import poselib sys.path.append(os.path.join(os.path.dirname(__file__),'..')) import argparse import datetime parser=argparse.ArgumentParser(description='HPatch dataset evaluation script') parser.add_argument('--name',type=str,default='LiftFeat',help='experiment name') parser.add_argument('--gpu',type=str,default='0',help='GPU ID') args=parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") top_k = None n_i = 52 n_v = 56 DATASET_ROOT = os.path.join(os.path.dirname(__file__),'../data/HPatch') from evaluation.eval_utils import * from models.liftfeat_wrapper import LiftFeat poselib_config = {"ransac_th": 3.0, "options": {}} class PoseLibHomographyEstimator: def __init__(self, conf): self.conf = conf def estimate(self, mkpts0,mkpts1): M, info = poselib.estimate_homography( mkpts0, mkpts1, { "max_reproj_error": self.conf["ransac_th"], **self.conf["options"], }, ) success = M is not None if not success: M = np.eye(3,dtype=np.float32) inl = np.zeros(mkpts0.shape[0],dtype=np.bool_) else: inl = info["inliers"] estimation = { "success": success, "M_0to1": M, "inliers": inl, } return estimation estimator=PoseLibHomographyEstimator(poselib_config) def poselib_homography_estimate(mkpts0,mkpts1): data=estimator.estimate(mkpts0,mkpts1) return data def generate_standard_image(img,target_size=(1920,1080)): sh,sw=img.shape[0],img.shape[1] rh,rw=float(target_size[1])/float(sh),float(target_size[0])/float(sw) ratio=min(rh,rw) nh,nw=int(ratio*sh),int(ratio*sw) ph,pw=target_size[1]-nh,target_size[0]-nw nimg=cv2.resize(img,(nw,nh)) nimg=cv2.copyMakeBorder(nimg,0,ph,0,pw,cv2.BORDER_CONSTANT,value=(0,0,0)) return nimg,ratio,ph,pw def benchmark_features(match_fn): lim = [1, 9] rng = np.arange(lim[0], lim[1] + 1) seq_names = sorted(os.listdir(DATASET_ROOT)) n_feats = [] n_matches = [] seq_type = [] i_err = {thr: 0 for thr in rng} v_err = {thr: 0 for thr in rng} i_err_homo = {thr: 0 for thr in rng} v_err_homo = {thr: 0 for thr in rng} for seq_idx, seq_name in tqdm(enumerate(seq_names), total=len(seq_names)): # load reference image ref_img = cv2.imread(os.path.join(DATASET_ROOT, seq_name, "1.ppm")) ref_img_shape=ref_img.shape # load query images for im_idx in range(2, 7): # read ground-truth homography homography = np.loadtxt(os.path.join(DATASET_ROOT, seq_name, "H_1_" + str(im_idx))) query_img = cv2.imread(os.path.join(DATASET_ROOT, seq_name, f"{im_idx}.ppm")) mkpts_a,mkpts_b=match_fn(ref_img,query_img) pos_a = mkpts_a pos_a_h = np.concatenate([pos_a, np.ones([pos_a.shape[0], 1])], axis=1) pos_b_proj_h = np.transpose(np.dot(homography, np.transpose(pos_a_h))) pos_b_proj = pos_b_proj_h[:, :2] / pos_b_proj_h[:, 2:] pos_b = mkpts_b dist = np.sqrt(np.sum((pos_b - pos_b_proj) ** 2, axis=1)) n_matches.append(pos_a.shape[0]) seq_type.append(seq_name[0]) if dist.shape[0] == 0: dist = np.array([float("inf")]) for thr in rng: if seq_name[0] == "i": i_err[thr] += np.mean(dist <= thr) else: v_err[thr] += np.mean(dist <= thr) # estimate homography gt_homo = homography pred_homo, _ = cv2.findHomography(mkpts_a,mkpts_b,cv2.USAC_MAGSAC) if pred_homo is None: homo_dist = np.array([float("inf")]) else: corners = np.array( [ [0, 0], [ref_img_shape[1] - 1, 0], [0, ref_img_shape[0] - 1], [ref_img_shape[1] - 1, ref_img_shape[0] - 1], ] ) real_warped_corners = homo_trans(corners, gt_homo) warped_corners = homo_trans(corners, pred_homo) homo_dist = np.mean(np.linalg.norm(real_warped_corners - warped_corners, axis=1)) for thr in rng: if seq_name[0] == "i": i_err_homo[thr] += np.mean(homo_dist <= thr) else: v_err_homo[thr] += np.mean(homo_dist <= thr) seq_type = np.array(seq_type) n_feats = np.array(n_feats) n_matches = np.array(n_matches) return i_err, v_err, i_err_homo, v_err_homo, [seq_type, n_feats, n_matches] if __name__ == "__main__": errors = {} weights=os.path.join(os.path.dirname(__file__),'../weights/LiftFeat.pth') liftfeat=LiftFeat(weight=weights) errors = benchmark_features(liftfeat.match_liftfeat) i_err, v_err, i_err_hom, v_err_hom, _ = errors cur_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print(f'\n==={cur_time}==={args.name}===') print(f"MHA@3 MHA@5 MHA@7") for thr in [3, 5, 7]: ill_err_hom = i_err_hom[thr] / (n_i * 5) view_err_hom = v_err_hom[thr] / (n_v * 5) print(f"{ill_err_hom * 100:.2f}%-{view_err_hom * 100:.2f}%")