import os os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' import torch from PIL import Image import torch.nn.functional as F import numpy as np from romatch.utils.utils import tensor_to_pil from romatch import tiny_roma_v1_outdoor device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if torch.backends.mps.is_available(): device = torch.device('mps') if __name__ == "__main__": from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("--im_A_path", default="assets/sacre_coeur_A.jpg", type=str) parser.add_argument("--im_B_path", default="assets/sacre_coeur_B.jpg", type=str) parser.add_argument("--save_A_path", default="demo/tiny_roma_warp_A.jpg", type=str) parser.add_argument("--save_B_path", default="demo/tiny_roma_warp_B.jpg", type=str) args, _ = parser.parse_known_args() im1_path = args.im_A_path im2_path = args.im_B_path # Create model roma_model = tiny_roma_v1_outdoor(device=device) # Match warp, certainty1 = roma_model.match(im1_path, im2_path) h1, w1 = warp.shape[:2] # maybe im1.size != im2.size im1 = Image.open(im1_path).resize((w1, h1)) im2 = Image.open(im2_path) x1 = (torch.tensor(np.array(im1)) / 255).to(device).permute(2, 0, 1) x2 = (torch.tensor(np.array(im2)) / 255).to(device).permute(2, 0, 1) h2, w2 = x2.shape[1:] g1_p2x = w2 / 2 * (warp[..., 2] + 1) g1_p2y = h2 / 2 * (warp[..., 3] + 1) g2_p1x = torch.zeros((h2, w2), dtype=torch.float32).to(device) - 2 g2_p1y = torch.zeros((h2, w2), dtype=torch.float32).to(device) - 2 x, y = torch.meshgrid( torch.arange(w1, device=device), torch.arange(h1, device=device), indexing="xy", ) g2x = torch.round(g1_p2x[y, x]).long() g2y = torch.round(g1_p2y[y, x]).long() idx_x = torch.bitwise_and(0 <= g2x, g2x < w2) idx_y = torch.bitwise_and(0 <= g2y, g2y < h2) idx = torch.bitwise_and(idx_x, idx_y) g2_p1x[g2y[idx], g2x[idx]] = x[idx].float() * 2 / w1 - 1 g2_p1y[g2y[idx], g2x[idx]] = y[idx].float() * 2 / h1 - 1 certainty2 = F.grid_sample( certainty1[None][None], torch.stack([g2_p1x, g2_p1y], dim=2)[None], mode="bilinear", align_corners=False, )[0] white_im1 = torch.ones((h1, w1), device = device) white_im2 = torch.ones((h2, w2), device = device) certainty1 = F.avg_pool2d(certainty1[None], kernel_size=5, stride=1, padding=2)[0] certainty2 = F.avg_pool2d(certainty2[None], kernel_size=5, stride=1, padding=2)[0] vis_im1 = certainty1 * x1 + (1 - certainty1) * white_im1 vis_im2 = certainty2 * x2 + (1 - certainty2) * white_im2 tensor_to_pil(vis_im1, unnormalize=False).save(args.save_A_path) tensor_to_pil(vis_im2, unnormalize=False).save(args.save_B_path)