Spaces:
Running
Running
Realcat
commited on
Commit
·
45fa4b6
1
Parent(s):
09c4be0
update: api
Browse files- imcui/api/__init__.py +47 -47
- imcui/api/client.py +232 -232
- imcui/api/config/api.yaml +35 -51
- imcui/api/core.py +308 -308
- imcui/api/server.py +186 -170
- imcui/api/test/build_and_run.sh +16 -16
- imcui/api/test/client.cpp +81 -81
- imcui/api/test/helper.h +405 -405
- imcui/ui/__init__.py +5 -5
- imcui/ui/app_class.py +816 -820
- imcui/ui/modelcache.py +371 -0
- imcui/ui/sfm.py +164 -164
- imcui/ui/utils.py +1108 -1164
- imcui/ui/viz.py +481 -481
imcui/api/__init__.py
CHANGED
@@ -1,47 +1,47 @@
|
|
1 |
-
import base64
|
2 |
-
import io
|
3 |
-
from typing import List
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
from fastapi.exceptions import HTTPException
|
7 |
-
from PIL import Image
|
8 |
-
from pydantic import BaseModel
|
9 |
-
|
10 |
-
from ..hloc import logger
|
11 |
-
from .core import ImageMatchingAPI
|
12 |
-
|
13 |
-
|
14 |
-
class ImagesInput(BaseModel):
|
15 |
-
data: List[str] = []
|
16 |
-
max_keypoints: List[int] = []
|
17 |
-
timestamps: List[str] = []
|
18 |
-
grayscale: bool = False
|
19 |
-
image_hw: List[List[int]] = [[], []]
|
20 |
-
feature_type: int = 0
|
21 |
-
rotates: List[float] = []
|
22 |
-
scales: List[float] = []
|
23 |
-
reference_points: List[List[float]] = []
|
24 |
-
binarize: bool = False
|
25 |
-
|
26 |
-
|
27 |
-
def decode_base64_to_image(encoding):
|
28 |
-
if encoding.startswith("data:image/"):
|
29 |
-
encoding = encoding.split(";")[1].split(",")[1]
|
30 |
-
try:
|
31 |
-
image = Image.open(io.BytesIO(base64.b64decode(encoding)))
|
32 |
-
return image
|
33 |
-
except Exception as e:
|
34 |
-
logger.warning(f"API cannot decode image: {e}")
|
35 |
-
raise HTTPException(status_code=500, detail="Invalid encoded image") from e
|
36 |
-
|
37 |
-
|
38 |
-
def to_base64_nparray(encoding: str) -> np.ndarray:
|
39 |
-
return np.array(decode_base64_to_image(encoding)).astype("uint8")
|
40 |
-
|
41 |
-
|
42 |
-
__all__ = [
|
43 |
-
"ImageMatchingAPI",
|
44 |
-
"ImagesInput",
|
45 |
-
"decode_base64_to_image",
|
46 |
-
"to_base64_nparray",
|
47 |
-
]
|
|
|
1 |
+
import base64
|
2 |
+
import io
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from fastapi.exceptions import HTTPException
|
7 |
+
from PIL import Image
|
8 |
+
from pydantic import BaseModel
|
9 |
+
|
10 |
+
from ..hloc import logger
|
11 |
+
from .core import ImageMatchingAPI
|
12 |
+
|
13 |
+
|
14 |
+
class ImagesInput(BaseModel):
|
15 |
+
data: List[str] = []
|
16 |
+
max_keypoints: List[int] = []
|
17 |
+
timestamps: List[str] = []
|
18 |
+
grayscale: bool = False
|
19 |
+
image_hw: List[List[int]] = [[], []]
|
20 |
+
feature_type: int = 0
|
21 |
+
rotates: List[float] = []
|
22 |
+
scales: List[float] = []
|
23 |
+
reference_points: List[List[float]] = []
|
24 |
+
binarize: bool = False
|
25 |
+
|
26 |
+
|
27 |
+
def decode_base64_to_image(encoding):
|
28 |
+
if encoding.startswith("data:image/"):
|
29 |
+
encoding = encoding.split(";")[1].split(",")[1]
|
30 |
+
try:
|
31 |
+
image = Image.open(io.BytesIO(base64.b64decode(encoding)))
|
32 |
+
return image
|
33 |
+
except Exception as e:
|
34 |
+
logger.warning(f"API cannot decode image: {e}")
|
35 |
+
raise HTTPException(status_code=500, detail="Invalid encoded image") from e
|
36 |
+
|
37 |
+
|
38 |
+
def to_base64_nparray(encoding: str) -> np.ndarray:
|
39 |
+
return np.array(decode_base64_to_image(encoding)).astype("uint8")
|
40 |
+
|
41 |
+
|
42 |
+
__all__ = [
|
43 |
+
"ImageMatchingAPI",
|
44 |
+
"ImagesInput",
|
45 |
+
"decode_base64_to_image",
|
46 |
+
"to_base64_nparray",
|
47 |
+
]
|
imcui/api/client.py
CHANGED
@@ -1,232 +1,232 @@
|
|
1 |
-
import argparse
|
2 |
-
import base64
|
3 |
-
import os
|
4 |
-
import pickle
|
5 |
-
import time
|
6 |
-
from typing import Dict, List
|
7 |
-
|
8 |
-
import cv2
|
9 |
-
import numpy as np
|
10 |
-
import requests
|
11 |
-
|
12 |
-
ENDPOINT = "http://127.0.0.1:8001"
|
13 |
-
if "REMOTE_URL_RAILWAY" in os.environ:
|
14 |
-
ENDPOINT = os.environ["REMOTE_URL_RAILWAY"]
|
15 |
-
|
16 |
-
print(f"API ENDPOINT: {ENDPOINT}")
|
17 |
-
|
18 |
-
API_VERSION = f"{ENDPOINT}/version"
|
19 |
-
API_URL_MATCH = f"{ENDPOINT}/v1/match"
|
20 |
-
API_URL_EXTRACT = f"{ENDPOINT}/v1/extract"
|
21 |
-
|
22 |
-
|
23 |
-
def read_image(path: str) -> str:
|
24 |
-
"""
|
25 |
-
Read an image from a file, encode it as a JPEG and then as a base64 string.
|
26 |
-
|
27 |
-
Args:
|
28 |
-
path (str): The path to the image to read.
|
29 |
-
|
30 |
-
Returns:
|
31 |
-
str: The base64 encoded image.
|
32 |
-
"""
|
33 |
-
# Read the image from the file
|
34 |
-
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
|
35 |
-
|
36 |
-
# Encode the image as a png, NO COMPRESSION!!!
|
37 |
-
retval, buffer = cv2.imencode(".png", img)
|
38 |
-
|
39 |
-
# Encode the JPEG as a base64 string
|
40 |
-
b64img = base64.b64encode(buffer).decode("utf-8")
|
41 |
-
|
42 |
-
return b64img
|
43 |
-
|
44 |
-
|
45 |
-
def do_api_requests(url=API_URL_EXTRACT, **kwargs):
|
46 |
-
"""
|
47 |
-
Helper function to send an API request to the image matching service.
|
48 |
-
|
49 |
-
Args:
|
50 |
-
url (str): The URL of the API endpoint to use. Defaults to the
|
51 |
-
feature extraction endpoint.
|
52 |
-
**kwargs: Additional keyword arguments to pass to the API.
|
53 |
-
|
54 |
-
Returns:
|
55 |
-
List[Dict[str, np.ndarray]]: A list of dictionaries containing the
|
56 |
-
extracted features. The keys are "keypoints", "descriptors", and
|
57 |
-
"scores", and the values are ndarrays of shape (N, 2), (N, ?),
|
58 |
-
and (N,), respectively.
|
59 |
-
"""
|
60 |
-
# Set up the request body
|
61 |
-
reqbody = {
|
62 |
-
# List of image data base64 encoded
|
63 |
-
"data": [],
|
64 |
-
# List of maximum number of keypoints to extract from each image
|
65 |
-
"max_keypoints": [100, 100],
|
66 |
-
# List of timestamps for each image (not used?)
|
67 |
-
"timestamps": ["0", "1"],
|
68 |
-
# Whether to convert the images to grayscale
|
69 |
-
"grayscale": 0,
|
70 |
-
# List of image height and width
|
71 |
-
"image_hw": [[640, 480], [320, 240]],
|
72 |
-
# Type of feature to extract
|
73 |
-
"feature_type": 0,
|
74 |
-
# List of rotation angles for each image
|
75 |
-
"rotates": [0.0, 0.0],
|
76 |
-
# List of scale factors for each image
|
77 |
-
"scales": [1.0, 1.0],
|
78 |
-
# List of reference points for each image (not used)
|
79 |
-
"reference_points": [[640, 480], [320, 240]],
|
80 |
-
# Whether to binarize the descriptors
|
81 |
-
"binarize": True,
|
82 |
-
}
|
83 |
-
# Update the request body with the additional keyword arguments
|
84 |
-
reqbody.update(kwargs)
|
85 |
-
try:
|
86 |
-
# Send the request
|
87 |
-
r = requests.post(url, json=reqbody)
|
88 |
-
if r.status_code == 200:
|
89 |
-
# Return the response
|
90 |
-
return r.json()
|
91 |
-
else:
|
92 |
-
# Print an error message if the response code is not 200
|
93 |
-
print(f"Error: Response code {r.status_code} - {r.text}")
|
94 |
-
except Exception as e:
|
95 |
-
# Print an error message if an exception occurs
|
96 |
-
print(f"An error occurred: {e}")
|
97 |
-
|
98 |
-
|
99 |
-
def send_request_match(path0: str, path1: str) -> Dict[str, np.ndarray]:
|
100 |
-
"""
|
101 |
-
Send a request to the API to generate a match between two images.
|
102 |
-
|
103 |
-
Args:
|
104 |
-
path0 (str): The path to the first image.
|
105 |
-
path1 (str): The path to the second image.
|
106 |
-
|
107 |
-
Returns:
|
108 |
-
Dict[str, np.ndarray]: A dictionary containing the generated matches.
|
109 |
-
The keys are "keypoints0", "keypoints1", "matches0", and "matches1",
|
110 |
-
and the values are ndarrays of shape (N, 2), (N, 2), (N, 2), and
|
111 |
-
(N, 2), respectively.
|
112 |
-
"""
|
113 |
-
files = {"image0": open(path0, "rb"), "image1": open(path1, "rb")}
|
114 |
-
try:
|
115 |
-
# TODO: replace files with post json
|
116 |
-
response = requests.post(API_URL_MATCH, files=files)
|
117 |
-
pred = {}
|
118 |
-
if response.status_code == 200:
|
119 |
-
pred = response.json()
|
120 |
-
for key in list(pred.keys()):
|
121 |
-
pred[key] = np.array(pred[key])
|
122 |
-
else:
|
123 |
-
print(f"Error: Response code {response.status_code} - {response.text}")
|
124 |
-
finally:
|
125 |
-
files["image0"].close()
|
126 |
-
files["image1"].close()
|
127 |
-
return pred
|
128 |
-
|
129 |
-
|
130 |
-
def send_request_extract(
|
131 |
-
input_images: str, viz: bool = False
|
132 |
-
) -> List[Dict[str, np.ndarray]]:
|
133 |
-
"""
|
134 |
-
Send a request to the API to extract features from an image.
|
135 |
-
|
136 |
-
Args:
|
137 |
-
input_images (str): The path to the image.
|
138 |
-
|
139 |
-
Returns:
|
140 |
-
List[Dict[str, np.ndarray]]: A list of dictionaries containing the
|
141 |
-
extracted features. The keys are "keypoints", "descriptors", and
|
142 |
-
"scores", and the values are ndarrays of shape (N, 2), (N, 128),
|
143 |
-
and (N,), respectively.
|
144 |
-
"""
|
145 |
-
image_data = read_image(input_images)
|
146 |
-
inputs = {
|
147 |
-
"data": [image_data],
|
148 |
-
}
|
149 |
-
response = do_api_requests(
|
150 |
-
url=API_URL_EXTRACT,
|
151 |
-
**inputs,
|
152 |
-
)
|
153 |
-
# breakpoint()
|
154 |
-
# print("Keypoints detected: {}".format(len(response[0]["keypoints"])))
|
155 |
-
|
156 |
-
# draw matching, debug only
|
157 |
-
if viz:
|
158 |
-
from hloc.utils.viz import plot_keypoints
|
159 |
-
from ui.viz import fig2im, plot_images
|
160 |
-
|
161 |
-
kpts = np.array(response[0]["keypoints_orig"])
|
162 |
-
if "image_orig" in response[0].keys():
|
163 |
-
img_orig = np.array(["image_orig"])
|
164 |
-
|
165 |
-
output_keypoints = plot_images([img_orig], titles="titles", dpi=300)
|
166 |
-
plot_keypoints([kpts])
|
167 |
-
output_keypoints = fig2im(output_keypoints)
|
168 |
-
cv2.imwrite(
|
169 |
-
"demo_match.jpg",
|
170 |
-
output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
|
171 |
-
)
|
172 |
-
return response
|
173 |
-
|
174 |
-
|
175 |
-
def get_api_version():
|
176 |
-
try:
|
177 |
-
response = requests.get(API_VERSION).json()
|
178 |
-
print("API VERSION: {}".format(response["version"]))
|
179 |
-
except Exception as e:
|
180 |
-
print(f"An error occurred: {e}")
|
181 |
-
|
182 |
-
|
183 |
-
if __name__ == "__main__":
|
184 |
-
from pathlib import Path
|
185 |
-
|
186 |
-
parser = argparse.ArgumentParser(
|
187 |
-
description="Send text to stable audio server and receive generated audio."
|
188 |
-
)
|
189 |
-
parser.add_argument(
|
190 |
-
"--image0",
|
191 |
-
required=False,
|
192 |
-
help="Path for the file's melody",
|
193 |
-
default=str(
|
194 |
-
Path(__file__).parents[1]
|
195 |
-
/ "datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg"
|
196 |
-
),
|
197 |
-
)
|
198 |
-
parser.add_argument(
|
199 |
-
"--image1",
|
200 |
-
required=False,
|
201 |
-
help="Path for the file's melody",
|
202 |
-
default=str(
|
203 |
-
Path(__file__).parents[1]
|
204 |
-
/ "datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot90.jpg"
|
205 |
-
),
|
206 |
-
)
|
207 |
-
args = parser.parse_args()
|
208 |
-
|
209 |
-
# get api version
|
210 |
-
get_api_version()
|
211 |
-
|
212 |
-
# request match
|
213 |
-
# for i in range(10):
|
214 |
-
# t1 = time.time()
|
215 |
-
# preds = send_request_match(args.image0, args.image1)
|
216 |
-
# t2 = time.time()
|
217 |
-
# print(
|
218 |
-
# "Time cost1: {} seconds, matched: {}".format(
|
219 |
-
# (t2 - t1), len(preds["mmkeypoints0_orig"])
|
220 |
-
# )
|
221 |
-
# )
|
222 |
-
|
223 |
-
# request extract
|
224 |
-
for i in range(1000):
|
225 |
-
t1 = time.time()
|
226 |
-
preds = send_request_extract(args.image0)
|
227 |
-
t2 = time.time()
|
228 |
-
print(f"Time cost2: {(t2 - t1)} seconds")
|
229 |
-
|
230 |
-
# dump preds
|
231 |
-
with open("preds.pkl", "wb") as f:
|
232 |
-
pickle.dump(preds, f)
|
|
|
1 |
+
import argparse
|
2 |
+
import base64
|
3 |
+
import os
|
4 |
+
import pickle
|
5 |
+
import time
|
6 |
+
from typing import Dict, List
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import requests
|
11 |
+
|
12 |
+
ENDPOINT = "http://127.0.0.1:8001"
|
13 |
+
if "REMOTE_URL_RAILWAY" in os.environ:
|
14 |
+
ENDPOINT = os.environ["REMOTE_URL_RAILWAY"]
|
15 |
+
|
16 |
+
print(f"API ENDPOINT: {ENDPOINT}")
|
17 |
+
|
18 |
+
API_VERSION = f"{ENDPOINT}/version"
|
19 |
+
API_URL_MATCH = f"{ENDPOINT}/v1/match"
|
20 |
+
API_URL_EXTRACT = f"{ENDPOINT}/v1/extract"
|
21 |
+
|
22 |
+
|
23 |
+
def read_image(path: str) -> str:
|
24 |
+
"""
|
25 |
+
Read an image from a file, encode it as a JPEG and then as a base64 string.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
path (str): The path to the image to read.
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
str: The base64 encoded image.
|
32 |
+
"""
|
33 |
+
# Read the image from the file
|
34 |
+
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
|
35 |
+
|
36 |
+
# Encode the image as a png, NO COMPRESSION!!!
|
37 |
+
retval, buffer = cv2.imencode(".png", img)
|
38 |
+
|
39 |
+
# Encode the JPEG as a base64 string
|
40 |
+
b64img = base64.b64encode(buffer).decode("utf-8")
|
41 |
+
|
42 |
+
return b64img
|
43 |
+
|
44 |
+
|
45 |
+
def do_api_requests(url=API_URL_EXTRACT, **kwargs):
|
46 |
+
"""
|
47 |
+
Helper function to send an API request to the image matching service.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
url (str): The URL of the API endpoint to use. Defaults to the
|
51 |
+
feature extraction endpoint.
|
52 |
+
**kwargs: Additional keyword arguments to pass to the API.
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
List[Dict[str, np.ndarray]]: A list of dictionaries containing the
|
56 |
+
extracted features. The keys are "keypoints", "descriptors", and
|
57 |
+
"scores", and the values are ndarrays of shape (N, 2), (N, ?),
|
58 |
+
and (N,), respectively.
|
59 |
+
"""
|
60 |
+
# Set up the request body
|
61 |
+
reqbody = {
|
62 |
+
# List of image data base64 encoded
|
63 |
+
"data": [],
|
64 |
+
# List of maximum number of keypoints to extract from each image
|
65 |
+
"max_keypoints": [100, 100],
|
66 |
+
# List of timestamps for each image (not used?)
|
67 |
+
"timestamps": ["0", "1"],
|
68 |
+
# Whether to convert the images to grayscale
|
69 |
+
"grayscale": 0,
|
70 |
+
# List of image height and width
|
71 |
+
"image_hw": [[640, 480], [320, 240]],
|
72 |
+
# Type of feature to extract
|
73 |
+
"feature_type": 0,
|
74 |
+
# List of rotation angles for each image
|
75 |
+
"rotates": [0.0, 0.0],
|
76 |
+
# List of scale factors for each image
|
77 |
+
"scales": [1.0, 1.0],
|
78 |
+
# List of reference points for each image (not used)
|
79 |
+
"reference_points": [[640, 480], [320, 240]],
|
80 |
+
# Whether to binarize the descriptors
|
81 |
+
"binarize": True,
|
82 |
+
}
|
83 |
+
# Update the request body with the additional keyword arguments
|
84 |
+
reqbody.update(kwargs)
|
85 |
+
try:
|
86 |
+
# Send the request
|
87 |
+
r = requests.post(url, json=reqbody)
|
88 |
+
if r.status_code == 200:
|
89 |
+
# Return the response
|
90 |
+
return r.json()
|
91 |
+
else:
|
92 |
+
# Print an error message if the response code is not 200
|
93 |
+
print(f"Error: Response code {r.status_code} - {r.text}")
|
94 |
+
except Exception as e:
|
95 |
+
# Print an error message if an exception occurs
|
96 |
+
print(f"An error occurred: {e}")
|
97 |
+
|
98 |
+
|
99 |
+
def send_request_match(path0: str, path1: str) -> Dict[str, np.ndarray]:
|
100 |
+
"""
|
101 |
+
Send a request to the API to generate a match between two images.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
path0 (str): The path to the first image.
|
105 |
+
path1 (str): The path to the second image.
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
Dict[str, np.ndarray]: A dictionary containing the generated matches.
|
109 |
+
The keys are "keypoints0", "keypoints1", "matches0", and "matches1",
|
110 |
+
and the values are ndarrays of shape (N, 2), (N, 2), (N, 2), and
|
111 |
+
(N, 2), respectively.
|
112 |
+
"""
|
113 |
+
files = {"image0": open(path0, "rb"), "image1": open(path1, "rb")}
|
114 |
+
try:
|
115 |
+
# TODO: replace files with post json
|
116 |
+
response = requests.post(API_URL_MATCH, files=files)
|
117 |
+
pred = {}
|
118 |
+
if response.status_code == 200:
|
119 |
+
pred = response.json()
|
120 |
+
for key in list(pred.keys()):
|
121 |
+
pred[key] = np.array(pred[key])
|
122 |
+
else:
|
123 |
+
print(f"Error: Response code {response.status_code} - {response.text}")
|
124 |
+
finally:
|
125 |
+
files["image0"].close()
|
126 |
+
files["image1"].close()
|
127 |
+
return pred
|
128 |
+
|
129 |
+
|
130 |
+
def send_request_extract(
|
131 |
+
input_images: str, viz: bool = False
|
132 |
+
) -> List[Dict[str, np.ndarray]]:
|
133 |
+
"""
|
134 |
+
Send a request to the API to extract features from an image.
|
135 |
+
|
136 |
+
Args:
|
137 |
+
input_images (str): The path to the image.
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
List[Dict[str, np.ndarray]]: A list of dictionaries containing the
|
141 |
+
extracted features. The keys are "keypoints", "descriptors", and
|
142 |
+
"scores", and the values are ndarrays of shape (N, 2), (N, 128),
|
143 |
+
and (N,), respectively.
|
144 |
+
"""
|
145 |
+
image_data = read_image(input_images)
|
146 |
+
inputs = {
|
147 |
+
"data": [image_data],
|
148 |
+
}
|
149 |
+
response = do_api_requests(
|
150 |
+
url=API_URL_EXTRACT,
|
151 |
+
**inputs,
|
152 |
+
)
|
153 |
+
# breakpoint()
|
154 |
+
# print("Keypoints detected: {}".format(len(response[0]["keypoints"])))
|
155 |
+
|
156 |
+
# draw matching, debug only
|
157 |
+
if viz:
|
158 |
+
from hloc.utils.viz import plot_keypoints
|
159 |
+
from ui.viz import fig2im, plot_images
|
160 |
+
|
161 |
+
kpts = np.array(response[0]["keypoints_orig"])
|
162 |
+
if "image_orig" in response[0].keys():
|
163 |
+
img_orig = np.array(["image_orig"])
|
164 |
+
|
165 |
+
output_keypoints = plot_images([img_orig], titles="titles", dpi=300)
|
166 |
+
plot_keypoints([kpts])
|
167 |
+
output_keypoints = fig2im(output_keypoints)
|
168 |
+
cv2.imwrite(
|
169 |
+
"demo_match.jpg",
|
170 |
+
output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
|
171 |
+
)
|
172 |
+
return response
|
173 |
+
|
174 |
+
|
175 |
+
def get_api_version():
|
176 |
+
try:
|
177 |
+
response = requests.get(API_VERSION).json()
|
178 |
+
print("API VERSION: {}".format(response["version"]))
|
179 |
+
except Exception as e:
|
180 |
+
print(f"An error occurred: {e}")
|
181 |
+
|
182 |
+
|
183 |
+
if __name__ == "__main__":
|
184 |
+
from pathlib import Path
|
185 |
+
|
186 |
+
parser = argparse.ArgumentParser(
|
187 |
+
description="Send text to stable audio server and receive generated audio."
|
188 |
+
)
|
189 |
+
parser.add_argument(
|
190 |
+
"--image0",
|
191 |
+
required=False,
|
192 |
+
help="Path for the file's melody",
|
193 |
+
default=str(
|
194 |
+
Path(__file__).parents[1]
|
195 |
+
/ "datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg"
|
196 |
+
),
|
197 |
+
)
|
198 |
+
parser.add_argument(
|
199 |
+
"--image1",
|
200 |
+
required=False,
|
201 |
+
help="Path for the file's melody",
|
202 |
+
default=str(
|
203 |
+
Path(__file__).parents[1]
|
204 |
+
/ "datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot90.jpg"
|
205 |
+
),
|
206 |
+
)
|
207 |
+
args = parser.parse_args()
|
208 |
+
|
209 |
+
# get api version
|
210 |
+
get_api_version()
|
211 |
+
|
212 |
+
# request match
|
213 |
+
# for i in range(10):
|
214 |
+
# t1 = time.time()
|
215 |
+
# preds = send_request_match(args.image0, args.image1)
|
216 |
+
# t2 = time.time()
|
217 |
+
# print(
|
218 |
+
# "Time cost1: {} seconds, matched: {}".format(
|
219 |
+
# (t2 - t1), len(preds["mmkeypoints0_orig"])
|
220 |
+
# )
|
221 |
+
# )
|
222 |
+
|
223 |
+
# request extract
|
224 |
+
for i in range(1000):
|
225 |
+
t1 = time.time()
|
226 |
+
preds = send_request_extract(args.image0)
|
227 |
+
t2 = time.time()
|
228 |
+
print(f"Time cost2: {(t2 - t1)} seconds")
|
229 |
+
|
230 |
+
# dump preds
|
231 |
+
with open("preds.pkl", "wb") as f:
|
232 |
+
pickle.dump(preds, f)
|
imcui/api/config/api.yaml
CHANGED
@@ -1,51 +1,35 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
max_keypoints: 4096
|
37 |
-
keypoint_threshold: 0.005
|
38 |
-
preprocessing:
|
39 |
-
grayscale: True
|
40 |
-
force_resize: True
|
41 |
-
resize_max: 1600
|
42 |
-
width: 640
|
43 |
-
height: 480
|
44 |
-
dfactor: 8
|
45 |
-
matcher:
|
46 |
-
output: matches-NN-mutual
|
47 |
-
model:
|
48 |
-
name: nearest_neighbor
|
49 |
-
do_mutual_check: True
|
50 |
-
match_threshold: 0.2
|
51 |
-
dense: False
|
|
|
1 |
+
service:
|
2 |
+
num_replicas: 4
|
3 |
+
ray_actor_options:
|
4 |
+
num_cpus: 2.0
|
5 |
+
num_gpus: 1.0
|
6 |
+
host: &default_host
|
7 |
+
"0.0.0.0"
|
8 |
+
http_options:
|
9 |
+
host: *default_host
|
10 |
+
port: 8001
|
11 |
+
route_prefix: "/"
|
12 |
+
dashboard_port: 8265
|
13 |
+
|
14 |
+
api:
|
15 |
+
feature:
|
16 |
+
output: feats-superpoint-n4096-rmax1600
|
17 |
+
model:
|
18 |
+
name: superpoint
|
19 |
+
nms_radius: 3
|
20 |
+
max_keypoints: 4096
|
21 |
+
keypoint_threshold: 0.005
|
22 |
+
preprocessing:
|
23 |
+
grayscale: True
|
24 |
+
force_resize: True
|
25 |
+
resize_max: 1600
|
26 |
+
width: 640
|
27 |
+
height: 480
|
28 |
+
dfactor: 8
|
29 |
+
matcher:
|
30 |
+
output: matches-NN-mutual
|
31 |
+
model:
|
32 |
+
name: nearest_neighbor
|
33 |
+
do_mutual_check: True
|
34 |
+
match_threshold: 0.2
|
35 |
+
dense: False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
imcui/api/core.py
CHANGED
@@ -1,308 +1,308 @@
|
|
1 |
-
# api.py
|
2 |
-
import warnings
|
3 |
-
from pathlib import Path
|
4 |
-
from typing import Any, Dict, Optional
|
5 |
-
|
6 |
-
import cv2
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import numpy as np
|
9 |
-
import torch
|
10 |
-
|
11 |
-
from ..hloc import extract_features, logger, match_dense, match_features
|
12 |
-
from ..hloc.utils.viz import add_text, plot_keypoints
|
13 |
-
from ..ui.utils import filter_matches, get_feature_model, get_model
|
14 |
-
from ..ui.viz import display_matches, fig2im, plot_images
|
15 |
-
|
16 |
-
warnings.simplefilter("ignore")
|
17 |
-
|
18 |
-
|
19 |
-
class ImageMatchingAPI(torch.nn.Module):
|
20 |
-
default_conf = {
|
21 |
-
"ransac": {
|
22 |
-
"enable": True,
|
23 |
-
"estimator": "poselib",
|
24 |
-
"geometry": "homography",
|
25 |
-
"method": "RANSAC",
|
26 |
-
"reproj_threshold": 3,
|
27 |
-
"confidence": 0.9999,
|
28 |
-
"max_iter": 10000,
|
29 |
-
},
|
30 |
-
}
|
31 |
-
|
32 |
-
def __init__(
|
33 |
-
self,
|
34 |
-
conf: dict = {},
|
35 |
-
device: str = "cpu",
|
36 |
-
detect_threshold: float = 0.015,
|
37 |
-
max_keypoints: int = 1024,
|
38 |
-
match_threshold: float = 0.2,
|
39 |
-
) -> None:
|
40 |
-
"""
|
41 |
-
Initializes an instance of the ImageMatchingAPI class.
|
42 |
-
|
43 |
-
Args:
|
44 |
-
conf (dict): A dictionary containing the configuration parameters.
|
45 |
-
device (str, optional): The device to use for computation. Defaults to "cpu".
|
46 |
-
detect_threshold (float, optional): The threshold for detecting keypoints. Defaults to 0.015.
|
47 |
-
max_keypoints (int, optional): The maximum number of keypoints to extract. Defaults to 1024.
|
48 |
-
match_threshold (float, optional): The threshold for matching keypoints. Defaults to 0.2.
|
49 |
-
|
50 |
-
Returns:
|
51 |
-
None
|
52 |
-
"""
|
53 |
-
super().__init__()
|
54 |
-
self.device = device
|
55 |
-
self.conf = {**self.default_conf, **conf}
|
56 |
-
self._updata_config(detect_threshold, max_keypoints, match_threshold)
|
57 |
-
self._init_models()
|
58 |
-
if device == "cuda":
|
59 |
-
memory_allocated = torch.cuda.memory_allocated(device)
|
60 |
-
memory_reserved = torch.cuda.memory_reserved(device)
|
61 |
-
logger.info(f"GPU memory allocated: {memory_allocated / 1024**2:.3f} MB")
|
62 |
-
logger.info(f"GPU memory reserved: {memory_reserved / 1024**2:.3f} MB")
|
63 |
-
self.pred = None
|
64 |
-
|
65 |
-
def parse_match_config(self, conf):
|
66 |
-
if conf["dense"]:
|
67 |
-
return {
|
68 |
-
**conf,
|
69 |
-
"matcher": match_dense.confs.get(conf["matcher"]["model"]["name"]),
|
70 |
-
"dense": True,
|
71 |
-
}
|
72 |
-
else:
|
73 |
-
return {
|
74 |
-
**conf,
|
75 |
-
"feature": extract_features.confs.get(conf["feature"]["model"]["name"]),
|
76 |
-
"matcher": match_features.confs.get(conf["matcher"]["model"]["name"]),
|
77 |
-
"dense": False,
|
78 |
-
}
|
79 |
-
|
80 |
-
def _updata_config(
|
81 |
-
self,
|
82 |
-
detect_threshold: float = 0.015,
|
83 |
-
max_keypoints: int = 1024,
|
84 |
-
match_threshold: float = 0.2,
|
85 |
-
):
|
86 |
-
self.dense = self.conf["dense"]
|
87 |
-
if self.conf["dense"]:
|
88 |
-
try:
|
89 |
-
self.conf["matcher"]["model"]["match_threshold"] = match_threshold
|
90 |
-
except TypeError as e:
|
91 |
-
logger.error(e)
|
92 |
-
else:
|
93 |
-
self.conf["feature"]["model"]["max_keypoints"] = max_keypoints
|
94 |
-
self.conf["feature"]["model"]["keypoint_threshold"] = detect_threshold
|
95 |
-
self.extract_conf = self.conf["feature"]
|
96 |
-
|
97 |
-
self.match_conf = self.conf["matcher"]
|
98 |
-
|
99 |
-
def _init_models(self):
|
100 |
-
# initialize matcher
|
101 |
-
self.matcher = get_model(self.match_conf)
|
102 |
-
# initialize extractor
|
103 |
-
if self.dense:
|
104 |
-
self.extractor = None
|
105 |
-
else:
|
106 |
-
self.extractor = get_feature_model(self.conf["feature"])
|
107 |
-
|
108 |
-
def _forward(self, img0, img1):
|
109 |
-
if self.dense:
|
110 |
-
pred = match_dense.match_images(
|
111 |
-
self.matcher,
|
112 |
-
img0,
|
113 |
-
img1,
|
114 |
-
self.match_conf["preprocessing"],
|
115 |
-
device=self.device,
|
116 |
-
)
|
117 |
-
last_fixed = "{}".format( # noqa: F841
|
118 |
-
self.match_conf["model"]["name"]
|
119 |
-
)
|
120 |
-
else:
|
121 |
-
pred0 = extract_features.extract(
|
122 |
-
self.extractor, img0, self.extract_conf["preprocessing"]
|
123 |
-
)
|
124 |
-
pred1 = extract_features.extract(
|
125 |
-
self.extractor, img1, self.extract_conf["preprocessing"]
|
126 |
-
)
|
127 |
-
pred = match_features.match_images(self.matcher, pred0, pred1)
|
128 |
-
return pred
|
129 |
-
|
130 |
-
def _convert_pred(self, pred):
|
131 |
-
ret = {
|
132 |
-
k: v.cpu().detach()[0].numpy() if isinstance(v, torch.Tensor) else v
|
133 |
-
for k, v in pred.items()
|
134 |
-
}
|
135 |
-
ret = {
|
136 |
-
k: v[0].cpu().detach().numpy() if isinstance(v, list) else v
|
137 |
-
for k, v in ret.items()
|
138 |
-
}
|
139 |
-
return ret
|
140 |
-
|
141 |
-
@torch.inference_mode()
|
142 |
-
def extract(self, img0: np.ndarray, **kwargs) -> Dict[str, np.ndarray]:
|
143 |
-
"""Extract features from a single image.
|
144 |
-
|
145 |
-
Args:
|
146 |
-
img0 (np.ndarray): image
|
147 |
-
|
148 |
-
Returns:
|
149 |
-
Dict[str, np.ndarray]: feature dict
|
150 |
-
"""
|
151 |
-
|
152 |
-
# setting prams
|
153 |
-
self.extractor.conf["max_keypoints"] = kwargs.get("max_keypoints", 512)
|
154 |
-
self.extractor.conf["keypoint_threshold"] = kwargs.get(
|
155 |
-
"keypoint_threshold", 0.0
|
156 |
-
)
|
157 |
-
|
158 |
-
pred = extract_features.extract(
|
159 |
-
self.extractor, img0, self.extract_conf["preprocessing"]
|
160 |
-
)
|
161 |
-
pred = self._convert_pred(pred)
|
162 |
-
# back to origin scale
|
163 |
-
s0 = pred["original_size"] / pred["size"]
|
164 |
-
pred["keypoints_orig"] = (
|
165 |
-
match_features.scale_keypoints(pred["keypoints"] + 0.5, s0) - 0.5
|
166 |
-
)
|
167 |
-
# TODO: rotate back
|
168 |
-
binarize = kwargs.get("binarize", False)
|
169 |
-
if binarize:
|
170 |
-
assert "descriptors" in pred
|
171 |
-
pred["descriptors"] = (pred["descriptors"] > 0).astype(np.uint8)
|
172 |
-
pred["descriptors"] = pred["descriptors"].T # N x DIM
|
173 |
-
return pred
|
174 |
-
|
175 |
-
@torch.inference_mode()
|
176 |
-
def forward(
|
177 |
-
self,
|
178 |
-
img0: np.ndarray,
|
179 |
-
img1: np.ndarray,
|
180 |
-
) -> Dict[str, np.ndarray]:
|
181 |
-
"""
|
182 |
-
Forward pass of the image matching API.
|
183 |
-
|
184 |
-
Args:
|
185 |
-
img0: A 3D NumPy array of shape (H, W, C) representing the first image.
|
186 |
-
Values are in the range [0, 1] and are in RGB mode.
|
187 |
-
img1: A 3D NumPy array of shape (H, W, C) representing the second image.
|
188 |
-
Values are in the range [0, 1] and are in RGB mode.
|
189 |
-
|
190 |
-
Returns:
|
191 |
-
A dictionary containing the following keys:
|
192 |
-
- image0_orig: The original image 0.
|
193 |
-
- image1_orig: The original image 1.
|
194 |
-
- keypoints0_orig: The keypoints detected in image 0.
|
195 |
-
- keypoints1_orig: The keypoints detected in image 1.
|
196 |
-
- mkeypoints0_orig: The raw matches between image 0 and image 1.
|
197 |
-
- mkeypoints1_orig: The raw matches between image 1 and image 0.
|
198 |
-
- mmkeypoints0_orig: The RANSAC inliers in image 0.
|
199 |
-
- mmkeypoints1_orig: The RANSAC inliers in image 1.
|
200 |
-
- mconf: The confidence scores for the raw matches.
|
201 |
-
- mmconf: The confidence scores for the RANSAC inliers.
|
202 |
-
"""
|
203 |
-
# Take as input a pair of images (not a batch)
|
204 |
-
assert isinstance(img0, np.ndarray)
|
205 |
-
assert isinstance(img1, np.ndarray)
|
206 |
-
self.pred = self._forward(img0, img1)
|
207 |
-
if self.conf["ransac"]["enable"]:
|
208 |
-
self.pred = self._geometry_check(self.pred)
|
209 |
-
return self.pred
|
210 |
-
|
211 |
-
def _geometry_check(
|
212 |
-
self,
|
213 |
-
pred: Dict[str, Any],
|
214 |
-
) -> Dict[str, Any]:
|
215 |
-
"""
|
216 |
-
Filter matches using RANSAC. If keypoints are available, filter by keypoints.
|
217 |
-
If lines are available, filter by lines. If both keypoints and lines are
|
218 |
-
available, filter by keypoints.
|
219 |
-
|
220 |
-
Args:
|
221 |
-
pred (Dict[str, Any]): dict of matches, including original keypoints.
|
222 |
-
See :func:`filter_matches` for the expected keys.
|
223 |
-
|
224 |
-
Returns:
|
225 |
-
Dict[str, Any]: filtered matches
|
226 |
-
"""
|
227 |
-
pred = filter_matches(
|
228 |
-
pred,
|
229 |
-
ransac_method=self.conf["ransac"]["method"],
|
230 |
-
ransac_reproj_threshold=self.conf["ransac"]["reproj_threshold"],
|
231 |
-
ransac_confidence=self.conf["ransac"]["confidence"],
|
232 |
-
ransac_max_iter=self.conf["ransac"]["max_iter"],
|
233 |
-
)
|
234 |
-
return pred
|
235 |
-
|
236 |
-
def visualize(
|
237 |
-
self,
|
238 |
-
log_path: Optional[Path] = None,
|
239 |
-
) -> None:
|
240 |
-
"""
|
241 |
-
Visualize the matches.
|
242 |
-
|
243 |
-
Args:
|
244 |
-
log_path (Path, optional): The directory to save the images. Defaults to None.
|
245 |
-
|
246 |
-
Returns:
|
247 |
-
None
|
248 |
-
"""
|
249 |
-
if self.conf["dense"]:
|
250 |
-
postfix = str(self.conf["matcher"]["model"]["name"])
|
251 |
-
else:
|
252 |
-
postfix = "{}_{}".format(
|
253 |
-
str(self.conf["feature"]["model"]["name"]),
|
254 |
-
str(self.conf["matcher"]["model"]["name"]),
|
255 |
-
)
|
256 |
-
titles = [
|
257 |
-
"Image 0 - Keypoints",
|
258 |
-
"Image 1 - Keypoints",
|
259 |
-
]
|
260 |
-
pred: Dict[str, Any] = self.pred
|
261 |
-
image0: np.ndarray = pred["image0_orig"]
|
262 |
-
image1: np.ndarray = pred["image1_orig"]
|
263 |
-
output_keypoints: np.ndarray = plot_images(
|
264 |
-
[image0, image1], titles=titles, dpi=300
|
265 |
-
)
|
266 |
-
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
|
267 |
-
plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
|
268 |
-
text: str = (
|
269 |
-
f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
|
270 |
-
+ f"# keypoints1: {len(pred['keypoints1_orig'])}"
|
271 |
-
)
|
272 |
-
add_text(0, text, fs=15)
|
273 |
-
output_keypoints = fig2im(output_keypoints)
|
274 |
-
# plot images with raw matches
|
275 |
-
titles = [
|
276 |
-
"Image 0 - Raw matched keypoints",
|
277 |
-
"Image 1 - Raw matched keypoints",
|
278 |
-
]
|
279 |
-
output_matches_raw, num_matches_raw = display_matches(
|
280 |
-
pred, titles=titles, tag="KPTS_RAW"
|
281 |
-
)
|
282 |
-
# plot images with ransac matches
|
283 |
-
titles = [
|
284 |
-
"Image 0 - Ransac matched keypoints",
|
285 |
-
"Image 1 - Ransac matched keypoints",
|
286 |
-
]
|
287 |
-
output_matches_ransac, num_matches_ransac = display_matches(
|
288 |
-
pred, titles=titles, tag="KPTS_RANSAC"
|
289 |
-
)
|
290 |
-
if log_path is not None:
|
291 |
-
img_keypoints_path: Path = log_path / f"img_keypoints_{postfix}.png"
|
292 |
-
img_matches_raw_path: Path = log_path / f"img_matches_raw_{postfix}.png"
|
293 |
-
img_matches_ransac_path: Path = (
|
294 |
-
log_path / f"img_matches_ransac_{postfix}.png"
|
295 |
-
)
|
296 |
-
cv2.imwrite(
|
297 |
-
str(img_keypoints_path),
|
298 |
-
output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
|
299 |
-
)
|
300 |
-
cv2.imwrite(
|
301 |
-
str(img_matches_raw_path),
|
302 |
-
output_matches_raw[:, :, ::-1].copy(), # RGB -> BGR
|
303 |
-
)
|
304 |
-
cv2.imwrite(
|
305 |
-
str(img_matches_ransac_path),
|
306 |
-
output_matches_ransac[:, :, ::-1].copy(), # RGB -> BGR
|
307 |
-
)
|
308 |
-
plt.close("all")
|
|
|
1 |
+
# api.py
|
2 |
+
import warnings
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Any, Dict, Optional
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from ..hloc import extract_features, logger, match_dense, match_features
|
12 |
+
from ..hloc.utils.viz import add_text, plot_keypoints
|
13 |
+
from ..ui.utils import filter_matches, get_feature_model, get_model
|
14 |
+
from ..ui.viz import display_matches, fig2im, plot_images
|
15 |
+
|
16 |
+
warnings.simplefilter("ignore")
|
17 |
+
|
18 |
+
|
19 |
+
class ImageMatchingAPI(torch.nn.Module):
|
20 |
+
default_conf = {
|
21 |
+
"ransac": {
|
22 |
+
"enable": True,
|
23 |
+
"estimator": "poselib",
|
24 |
+
"geometry": "homography",
|
25 |
+
"method": "RANSAC",
|
26 |
+
"reproj_threshold": 3,
|
27 |
+
"confidence": 0.9999,
|
28 |
+
"max_iter": 10000,
|
29 |
+
},
|
30 |
+
}
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
conf: dict = {},
|
35 |
+
device: str = "cpu",
|
36 |
+
detect_threshold: float = 0.015,
|
37 |
+
max_keypoints: int = 1024,
|
38 |
+
match_threshold: float = 0.2,
|
39 |
+
) -> None:
|
40 |
+
"""
|
41 |
+
Initializes an instance of the ImageMatchingAPI class.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
conf (dict): A dictionary containing the configuration parameters.
|
45 |
+
device (str, optional): The device to use for computation. Defaults to "cpu".
|
46 |
+
detect_threshold (float, optional): The threshold for detecting keypoints. Defaults to 0.015.
|
47 |
+
max_keypoints (int, optional): The maximum number of keypoints to extract. Defaults to 1024.
|
48 |
+
match_threshold (float, optional): The threshold for matching keypoints. Defaults to 0.2.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
None
|
52 |
+
"""
|
53 |
+
super().__init__()
|
54 |
+
self.device = device
|
55 |
+
self.conf = {**self.default_conf, **conf}
|
56 |
+
self._updata_config(detect_threshold, max_keypoints, match_threshold)
|
57 |
+
self._init_models()
|
58 |
+
if device == "cuda":
|
59 |
+
memory_allocated = torch.cuda.memory_allocated(device)
|
60 |
+
memory_reserved = torch.cuda.memory_reserved(device)
|
61 |
+
logger.info(f"GPU memory allocated: {memory_allocated / 1024**2:.3f} MB")
|
62 |
+
logger.info(f"GPU memory reserved: {memory_reserved / 1024**2:.3f} MB")
|
63 |
+
self.pred = None
|
64 |
+
|
65 |
+
def parse_match_config(self, conf):
|
66 |
+
if conf["dense"]:
|
67 |
+
return {
|
68 |
+
**conf,
|
69 |
+
"matcher": match_dense.confs.get(conf["matcher"]["model"]["name"]),
|
70 |
+
"dense": True,
|
71 |
+
}
|
72 |
+
else:
|
73 |
+
return {
|
74 |
+
**conf,
|
75 |
+
"feature": extract_features.confs.get(conf["feature"]["model"]["name"]),
|
76 |
+
"matcher": match_features.confs.get(conf["matcher"]["model"]["name"]),
|
77 |
+
"dense": False,
|
78 |
+
}
|
79 |
+
|
80 |
+
def _updata_config(
|
81 |
+
self,
|
82 |
+
detect_threshold: float = 0.015,
|
83 |
+
max_keypoints: int = 1024,
|
84 |
+
match_threshold: float = 0.2,
|
85 |
+
):
|
86 |
+
self.dense = self.conf["dense"]
|
87 |
+
if self.conf["dense"]:
|
88 |
+
try:
|
89 |
+
self.conf["matcher"]["model"]["match_threshold"] = match_threshold
|
90 |
+
except TypeError as e:
|
91 |
+
logger.error(e)
|
92 |
+
else:
|
93 |
+
self.conf["feature"]["model"]["max_keypoints"] = max_keypoints
|
94 |
+
self.conf["feature"]["model"]["keypoint_threshold"] = detect_threshold
|
95 |
+
self.extract_conf = self.conf["feature"]
|
96 |
+
|
97 |
+
self.match_conf = self.conf["matcher"]
|
98 |
+
|
99 |
+
def _init_models(self):
|
100 |
+
# initialize matcher
|
101 |
+
self.matcher = get_model(self.match_conf)
|
102 |
+
# initialize extractor
|
103 |
+
if self.dense:
|
104 |
+
self.extractor = None
|
105 |
+
else:
|
106 |
+
self.extractor = get_feature_model(self.conf["feature"])
|
107 |
+
|
108 |
+
def _forward(self, img0, img1):
|
109 |
+
if self.dense:
|
110 |
+
pred = match_dense.match_images(
|
111 |
+
self.matcher,
|
112 |
+
img0,
|
113 |
+
img1,
|
114 |
+
self.match_conf["preprocessing"],
|
115 |
+
device=self.device,
|
116 |
+
)
|
117 |
+
last_fixed = "{}".format( # noqa: F841
|
118 |
+
self.match_conf["model"]["name"]
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
pred0 = extract_features.extract(
|
122 |
+
self.extractor, img0, self.extract_conf["preprocessing"]
|
123 |
+
)
|
124 |
+
pred1 = extract_features.extract(
|
125 |
+
self.extractor, img1, self.extract_conf["preprocessing"]
|
126 |
+
)
|
127 |
+
pred = match_features.match_images(self.matcher, pred0, pred1)
|
128 |
+
return pred
|
129 |
+
|
130 |
+
def _convert_pred(self, pred):
|
131 |
+
ret = {
|
132 |
+
k: v.cpu().detach()[0].numpy() if isinstance(v, torch.Tensor) else v
|
133 |
+
for k, v in pred.items()
|
134 |
+
}
|
135 |
+
ret = {
|
136 |
+
k: v[0].cpu().detach().numpy() if isinstance(v, list) else v
|
137 |
+
for k, v in ret.items()
|
138 |
+
}
|
139 |
+
return ret
|
140 |
+
|
141 |
+
@torch.inference_mode()
|
142 |
+
def extract(self, img0: np.ndarray, **kwargs) -> Dict[str, np.ndarray]:
|
143 |
+
"""Extract features from a single image.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
img0 (np.ndarray): image
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
Dict[str, np.ndarray]: feature dict
|
150 |
+
"""
|
151 |
+
|
152 |
+
# setting prams
|
153 |
+
self.extractor.conf["max_keypoints"] = kwargs.get("max_keypoints", 512)
|
154 |
+
self.extractor.conf["keypoint_threshold"] = kwargs.get(
|
155 |
+
"keypoint_threshold", 0.0
|
156 |
+
)
|
157 |
+
|
158 |
+
pred = extract_features.extract(
|
159 |
+
self.extractor, img0, self.extract_conf["preprocessing"]
|
160 |
+
)
|
161 |
+
pred = self._convert_pred(pred)
|
162 |
+
# back to origin scale
|
163 |
+
s0 = pred["original_size"] / pred["size"]
|
164 |
+
pred["keypoints_orig"] = (
|
165 |
+
match_features.scale_keypoints(pred["keypoints"] + 0.5, s0) - 0.5
|
166 |
+
)
|
167 |
+
# TODO: rotate back
|
168 |
+
binarize = kwargs.get("binarize", False)
|
169 |
+
if binarize:
|
170 |
+
assert "descriptors" in pred
|
171 |
+
pred["descriptors"] = (pred["descriptors"] > 0).astype(np.uint8)
|
172 |
+
pred["descriptors"] = pred["descriptors"].T # N x DIM
|
173 |
+
return pred
|
174 |
+
|
175 |
+
@torch.inference_mode()
|
176 |
+
def forward(
|
177 |
+
self,
|
178 |
+
img0: np.ndarray,
|
179 |
+
img1: np.ndarray,
|
180 |
+
) -> Dict[str, np.ndarray]:
|
181 |
+
"""
|
182 |
+
Forward pass of the image matching API.
|
183 |
+
|
184 |
+
Args:
|
185 |
+
img0: A 3D NumPy array of shape (H, W, C) representing the first image.
|
186 |
+
Values are in the range [0, 1] and are in RGB mode.
|
187 |
+
img1: A 3D NumPy array of shape (H, W, C) representing the second image.
|
188 |
+
Values are in the range [0, 1] and are in RGB mode.
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
A dictionary containing the following keys:
|
192 |
+
- image0_orig: The original image 0.
|
193 |
+
- image1_orig: The original image 1.
|
194 |
+
- keypoints0_orig: The keypoints detected in image 0.
|
195 |
+
- keypoints1_orig: The keypoints detected in image 1.
|
196 |
+
- mkeypoints0_orig: The raw matches between image 0 and image 1.
|
197 |
+
- mkeypoints1_orig: The raw matches between image 1 and image 0.
|
198 |
+
- mmkeypoints0_orig: The RANSAC inliers in image 0.
|
199 |
+
- mmkeypoints1_orig: The RANSAC inliers in image 1.
|
200 |
+
- mconf: The confidence scores for the raw matches.
|
201 |
+
- mmconf: The confidence scores for the RANSAC inliers.
|
202 |
+
"""
|
203 |
+
# Take as input a pair of images (not a batch)
|
204 |
+
assert isinstance(img0, np.ndarray)
|
205 |
+
assert isinstance(img1, np.ndarray)
|
206 |
+
self.pred = self._forward(img0, img1)
|
207 |
+
if self.conf["ransac"]["enable"]:
|
208 |
+
self.pred = self._geometry_check(self.pred)
|
209 |
+
return self.pred
|
210 |
+
|
211 |
+
def _geometry_check(
|
212 |
+
self,
|
213 |
+
pred: Dict[str, Any],
|
214 |
+
) -> Dict[str, Any]:
|
215 |
+
"""
|
216 |
+
Filter matches using RANSAC. If keypoints are available, filter by keypoints.
|
217 |
+
If lines are available, filter by lines. If both keypoints and lines are
|
218 |
+
available, filter by keypoints.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
pred (Dict[str, Any]): dict of matches, including original keypoints.
|
222 |
+
See :func:`filter_matches` for the expected keys.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
Dict[str, Any]: filtered matches
|
226 |
+
"""
|
227 |
+
pred = filter_matches(
|
228 |
+
pred,
|
229 |
+
ransac_method=self.conf["ransac"]["method"],
|
230 |
+
ransac_reproj_threshold=self.conf["ransac"]["reproj_threshold"],
|
231 |
+
ransac_confidence=self.conf["ransac"]["confidence"],
|
232 |
+
ransac_max_iter=self.conf["ransac"]["max_iter"],
|
233 |
+
)
|
234 |
+
return pred
|
235 |
+
|
236 |
+
def visualize(
|
237 |
+
self,
|
238 |
+
log_path: Optional[Path] = None,
|
239 |
+
) -> None:
|
240 |
+
"""
|
241 |
+
Visualize the matches.
|
242 |
+
|
243 |
+
Args:
|
244 |
+
log_path (Path, optional): The directory to save the images. Defaults to None.
|
245 |
+
|
246 |
+
Returns:
|
247 |
+
None
|
248 |
+
"""
|
249 |
+
if self.conf["dense"]:
|
250 |
+
postfix = str(self.conf["matcher"]["model"]["name"])
|
251 |
+
else:
|
252 |
+
postfix = "{}_{}".format(
|
253 |
+
str(self.conf["feature"]["model"]["name"]),
|
254 |
+
str(self.conf["matcher"]["model"]["name"]),
|
255 |
+
)
|
256 |
+
titles = [
|
257 |
+
"Image 0 - Keypoints",
|
258 |
+
"Image 1 - Keypoints",
|
259 |
+
]
|
260 |
+
pred: Dict[str, Any] = self.pred
|
261 |
+
image0: np.ndarray = pred["image0_orig"]
|
262 |
+
image1: np.ndarray = pred["image1_orig"]
|
263 |
+
output_keypoints: np.ndarray = plot_images(
|
264 |
+
[image0, image1], titles=titles, dpi=300
|
265 |
+
)
|
266 |
+
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
|
267 |
+
plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
|
268 |
+
text: str = (
|
269 |
+
f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
|
270 |
+
+ f"# keypoints1: {len(pred['keypoints1_orig'])}"
|
271 |
+
)
|
272 |
+
add_text(0, text, fs=15)
|
273 |
+
output_keypoints = fig2im(output_keypoints)
|
274 |
+
# plot images with raw matches
|
275 |
+
titles = [
|
276 |
+
"Image 0 - Raw matched keypoints",
|
277 |
+
"Image 1 - Raw matched keypoints",
|
278 |
+
]
|
279 |
+
output_matches_raw, num_matches_raw = display_matches(
|
280 |
+
pred, titles=titles, tag="KPTS_RAW"
|
281 |
+
)
|
282 |
+
# plot images with ransac matches
|
283 |
+
titles = [
|
284 |
+
"Image 0 - Ransac matched keypoints",
|
285 |
+
"Image 1 - Ransac matched keypoints",
|
286 |
+
]
|
287 |
+
output_matches_ransac, num_matches_ransac = display_matches(
|
288 |
+
pred, titles=titles, tag="KPTS_RANSAC"
|
289 |
+
)
|
290 |
+
if log_path is not None:
|
291 |
+
img_keypoints_path: Path = log_path / f"img_keypoints_{postfix}.png"
|
292 |
+
img_matches_raw_path: Path = log_path / f"img_matches_raw_{postfix}.png"
|
293 |
+
img_matches_ransac_path: Path = (
|
294 |
+
log_path / f"img_matches_ransac_{postfix}.png"
|
295 |
+
)
|
296 |
+
cv2.imwrite(
|
297 |
+
str(img_keypoints_path),
|
298 |
+
output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
|
299 |
+
)
|
300 |
+
cv2.imwrite(
|
301 |
+
str(img_matches_raw_path),
|
302 |
+
output_matches_raw[:, :, ::-1].copy(), # RGB -> BGR
|
303 |
+
)
|
304 |
+
cv2.imwrite(
|
305 |
+
str(img_matches_ransac_path),
|
306 |
+
output_matches_ransac[:, :, ::-1].copy(), # RGB -> BGR
|
307 |
+
)
|
308 |
+
plt.close("all")
|
imcui/api/server.py
CHANGED
@@ -1,170 +1,186 @@
|
|
1 |
-
# server.py
|
2 |
-
import warnings
|
3 |
-
from pathlib import Path
|
4 |
-
from typing import Union
|
5 |
-
|
6 |
-
import numpy as np
|
7 |
-
import ray
|
8 |
-
import torch
|
9 |
-
import
|
10 |
-
from fastapi import
|
11 |
-
from
|
12 |
-
from
|
13 |
-
|
14 |
-
|
15 |
-
from . import ImagesInput, to_base64_nparray
|
16 |
-
from .core import ImageMatchingAPI
|
17 |
-
from ..hloc import DEVICE
|
18 |
-
from ..
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
ray.
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
"""
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# server.py
|
2 |
+
import warnings
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import ray
|
8 |
+
import torch
|
9 |
+
from fastapi import FastAPI, File, UploadFile
|
10 |
+
from fastapi.responses import JSONResponse
|
11 |
+
from PIL import Image
|
12 |
+
from ray import serve
|
13 |
+
import argparse
|
14 |
+
|
15 |
+
from . import ImagesInput, to_base64_nparray
|
16 |
+
from .core import ImageMatchingAPI
|
17 |
+
from ..hloc import DEVICE
|
18 |
+
from ..hloc.utils.io import read_yaml
|
19 |
+
from ..ui import get_version
|
20 |
+
|
21 |
+
warnings.simplefilter("ignore")
|
22 |
+
app = FastAPI()
|
23 |
+
if ray.is_initialized():
|
24 |
+
ray.shutdown()
|
25 |
+
|
26 |
+
|
27 |
+
# read some configs
|
28 |
+
parser = argparse.ArgumentParser()
|
29 |
+
parser.add_argument(
|
30 |
+
"--config",
|
31 |
+
type=Path,
|
32 |
+
required=False,
|
33 |
+
default=Path(__file__).parent / "config/api.yaml",
|
34 |
+
)
|
35 |
+
args = parser.parse_args()
|
36 |
+
config_path = args.config
|
37 |
+
config = read_yaml(config_path)
|
38 |
+
num_gpus = 1 if torch.cuda.is_available() else 0
|
39 |
+
ray_actor_options = config["service"].get("ray_actor_options", {})
|
40 |
+
ray_actor_options.update({"num_gpus": num_gpus})
|
41 |
+
dashboard_port = config["service"].get("dashboard_port", 8265)
|
42 |
+
http_options = config["service"].get(
|
43 |
+
"http_options",
|
44 |
+
{
|
45 |
+
"host": "0.0.0.0",
|
46 |
+
"port": 8001,
|
47 |
+
},
|
48 |
+
)
|
49 |
+
num_replicas = config["service"].get("num_replicas", 4)
|
50 |
+
ray.init(
|
51 |
+
dashboard_port=dashboard_port,
|
52 |
+
ignore_reinit_error=True,
|
53 |
+
)
|
54 |
+
serve.start(http_options=http_options)
|
55 |
+
|
56 |
+
|
57 |
+
@serve.deployment(
|
58 |
+
num_replicas=num_replicas,
|
59 |
+
ray_actor_options=ray_actor_options,
|
60 |
+
)
|
61 |
+
@serve.ingress(app)
|
62 |
+
class ImageMatchingService:
|
63 |
+
def __init__(self, conf: dict, device: str, **kwargs):
|
64 |
+
self.conf = conf
|
65 |
+
self.api = ImageMatchingAPI(conf=conf, device=device)
|
66 |
+
|
67 |
+
@app.get("/")
|
68 |
+
def root(self):
|
69 |
+
return "Hello, world!"
|
70 |
+
|
71 |
+
@app.get("/version")
|
72 |
+
async def version(self):
|
73 |
+
return {"version": get_version()}
|
74 |
+
|
75 |
+
@app.post("/v1/match")
|
76 |
+
async def match(
|
77 |
+
self, image0: UploadFile = File(...), image1: UploadFile = File(...)
|
78 |
+
):
|
79 |
+
"""
|
80 |
+
Handle the image matching request and return the processed result.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
image0 (UploadFile): The first image file for matching.
|
84 |
+
image1 (UploadFile): The second image file for matching.
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
JSONResponse: A JSON response containing the filtered match results
|
88 |
+
or an error message in case of failure.
|
89 |
+
"""
|
90 |
+
try:
|
91 |
+
# Load the images from the uploaded files
|
92 |
+
image0_array = self.load_image(image0)
|
93 |
+
image1_array = self.load_image(image1)
|
94 |
+
|
95 |
+
# Perform image matching using the API
|
96 |
+
output = self.api(image0_array, image1_array)
|
97 |
+
|
98 |
+
# Keys to skip in the output
|
99 |
+
skip_keys = ["image0_orig", "image1_orig"]
|
100 |
+
|
101 |
+
# Postprocess the output to filter unwanted data
|
102 |
+
pred = self.postprocess(output, skip_keys)
|
103 |
+
|
104 |
+
# Return the filtered prediction as a JSON response
|
105 |
+
return JSONResponse(content=pred)
|
106 |
+
except Exception as e:
|
107 |
+
# Return an error message with status code 500 in case of exception
|
108 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
109 |
+
|
110 |
+
@app.post("/v1/extract")
|
111 |
+
async def extract(self, input_info: ImagesInput):
|
112 |
+
"""
|
113 |
+
Extract keypoints and descriptors from images.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
input_info: An object containing the image data and options.
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
A list of dictionaries containing the keypoints and descriptors.
|
120 |
+
"""
|
121 |
+
try:
|
122 |
+
preds = []
|
123 |
+
for i, input_image in enumerate(input_info.data):
|
124 |
+
# Load the image from the input data
|
125 |
+
image_array = to_base64_nparray(input_image)
|
126 |
+
# Extract keypoints and descriptors
|
127 |
+
output = self.api.extract(
|
128 |
+
image_array,
|
129 |
+
max_keypoints=input_info.max_keypoints[i],
|
130 |
+
binarize=input_info.binarize,
|
131 |
+
)
|
132 |
+
# Do not return the original image and image_orig
|
133 |
+
# skip_keys = ["image", "image_orig"]
|
134 |
+
skip_keys = []
|
135 |
+
|
136 |
+
# Postprocess the output
|
137 |
+
pred = self.postprocess(output, skip_keys)
|
138 |
+
preds.append(pred)
|
139 |
+
# Return the list of extracted features
|
140 |
+
return JSONResponse(content=preds)
|
141 |
+
except Exception as e:
|
142 |
+
# Return an error message if an exception occurs
|
143 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
144 |
+
|
145 |
+
def load_image(self, file_path: Union[str, UploadFile]) -> np.ndarray:
|
146 |
+
"""
|
147 |
+
Reads an image from a file path or an UploadFile object.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
file_path: A file path or an UploadFile object.
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
A numpy array representing the image.
|
154 |
+
"""
|
155 |
+
if isinstance(file_path, str):
|
156 |
+
file_path = Path(file_path).resolve(strict=False)
|
157 |
+
else:
|
158 |
+
file_path = file_path.file
|
159 |
+
with Image.open(file_path) as img:
|
160 |
+
image_array = np.array(img)
|
161 |
+
return image_array
|
162 |
+
|
163 |
+
def postprocess(self, output: dict, skip_keys: list, **kwargs) -> dict:
|
164 |
+
pred = {}
|
165 |
+
for key, value in output.items():
|
166 |
+
if key in skip_keys:
|
167 |
+
continue
|
168 |
+
if isinstance(value, np.ndarray):
|
169 |
+
pred[key] = value.tolist()
|
170 |
+
return pred
|
171 |
+
|
172 |
+
def run(self, host: str = "0.0.0.0", port: int = 8001):
|
173 |
+
import uvicorn
|
174 |
+
|
175 |
+
uvicorn.run(app, host=host, port=port)
|
176 |
+
|
177 |
+
|
178 |
+
if __name__ == "__main__":
|
179 |
+
# api server
|
180 |
+
service = ImageMatchingService.bind(conf=config["api"], device=DEVICE)
|
181 |
+
handle = serve.run(service, route_prefix="/", blocking=False)
|
182 |
+
|
183 |
+
# serve run api.server_ray:service
|
184 |
+
# build to generate config file
|
185 |
+
# serve build api.server_ray:service -o api/config/ray.yaml
|
186 |
+
# serve run api/config/ray.yaml
|
imcui/api/test/build_and_run.sh
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
# g++ main.cpp -I/usr/include/opencv4 -lcurl -ljsoncpp -lb64 -lopencv_core -lopencv_imgcodecs -o main
|
2 |
-
# sudo apt-get update
|
3 |
-
# sudo apt-get install libboost-all-dev -y
|
4 |
-
# sudo apt-get install libcurl4-openssl-dev libjsoncpp-dev libb64-dev libopencv-dev -y
|
5 |
-
|
6 |
-
cd build
|
7 |
-
cmake ..
|
8 |
-
make -j12
|
9 |
-
|
10 |
-
echo " ======== RUN DEMO ========"
|
11 |
-
|
12 |
-
./client
|
13 |
-
|
14 |
-
echo " ======== END DEMO ========"
|
15 |
-
|
16 |
-
cd ..
|
|
|
1 |
+
# g++ main.cpp -I/usr/include/opencv4 -lcurl -ljsoncpp -lb64 -lopencv_core -lopencv_imgcodecs -o main
|
2 |
+
# sudo apt-get update
|
3 |
+
# sudo apt-get install libboost-all-dev -y
|
4 |
+
# sudo apt-get install libcurl4-openssl-dev libjsoncpp-dev libb64-dev libopencv-dev -y
|
5 |
+
|
6 |
+
cd build
|
7 |
+
cmake ..
|
8 |
+
make -j12
|
9 |
+
|
10 |
+
echo " ======== RUN DEMO ========"
|
11 |
+
|
12 |
+
./client
|
13 |
+
|
14 |
+
echo " ======== END DEMO ========"
|
15 |
+
|
16 |
+
cd ..
|
imcui/api/test/client.cpp
CHANGED
@@ -1,81 +1,81 @@
|
|
1 |
-
#include <curl/curl.h>
|
2 |
-
#include <opencv2/opencv.hpp>
|
3 |
-
#include "helper.h"
|
4 |
-
|
5 |
-
int main() {
|
6 |
-
std::string img_path =
|
7 |
-
"../../../datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg";
|
8 |
-
cv::Mat original_img = cv::imread(img_path, cv::IMREAD_GRAYSCALE);
|
9 |
-
|
10 |
-
if (original_img.empty()) {
|
11 |
-
throw std::runtime_error("Failed to decode image");
|
12 |
-
}
|
13 |
-
|
14 |
-
// Convert the image to Base64
|
15 |
-
std::string base64_img = image_to_base64(original_img);
|
16 |
-
|
17 |
-
// Convert the Base64 back to an image
|
18 |
-
cv::Mat decoded_img = base64_to_image(base64_img);
|
19 |
-
cv::imwrite("decoded_image.jpg", decoded_img);
|
20 |
-
cv::imwrite("original_img.jpg", original_img);
|
21 |
-
|
22 |
-
// The images should be identical
|
23 |
-
if (cv::countNonZero(original_img != decoded_img) != 0) {
|
24 |
-
std::cerr << "The images are not identical" << std::endl;
|
25 |
-
return -1;
|
26 |
-
} else {
|
27 |
-
std::cout << "The images are identical!" << std::endl;
|
28 |
-
}
|
29 |
-
|
30 |
-
// construct params
|
31 |
-
APIParams params{.data = {base64_img},
|
32 |
-
.max_keypoints = {100, 100},
|
33 |
-
.timestamps = {"0", "1"},
|
34 |
-
.grayscale = {0},
|
35 |
-
.image_hw = {{480, 640}, {240, 320}},
|
36 |
-
.feature_type = 0,
|
37 |
-
.rotates = {0.0f, 0.0f},
|
38 |
-
.scales = {1.0f, 1.0f},
|
39 |
-
.reference_points = {{1.23e+2f, 1.2e+1f},
|
40 |
-
{5.0e-1f, 3.0e-1f},
|
41 |
-
{2.3e+2f, 2.2e+1f},
|
42 |
-
{6.0e-1f, 4.0e-1f}},
|
43 |
-
.binarize = {1}};
|
44 |
-
|
45 |
-
KeyPointResults kpts_results;
|
46 |
-
|
47 |
-
// Convert the parameters to JSON
|
48 |
-
Json::Value jsonData = paramsToJson(params);
|
49 |
-
std::string url = "http://127.0.0.1:8001/v1/extract";
|
50 |
-
Json::StreamWriterBuilder writer;
|
51 |
-
std::string output = Json::writeString(writer, jsonData);
|
52 |
-
|
53 |
-
CURL* curl;
|
54 |
-
CURLcode res;
|
55 |
-
std::string readBuffer;
|
56 |
-
|
57 |
-
curl_global_init(CURL_GLOBAL_DEFAULT);
|
58 |
-
curl = curl_easy_init();
|
59 |
-
if (curl) {
|
60 |
-
struct curl_slist* hs = NULL;
|
61 |
-
hs = curl_slist_append(hs, "Content-Type: application/json");
|
62 |
-
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, hs);
|
63 |
-
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
|
64 |
-
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, output.c_str());
|
65 |
-
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, WriteCallback);
|
66 |
-
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &readBuffer);
|
67 |
-
res = curl_easy_perform(curl);
|
68 |
-
|
69 |
-
if (res != CURLE_OK)
|
70 |
-
fprintf(
|
71 |
-
stderr, "curl_easy_perform() failed: %s\n", curl_easy_strerror(res));
|
72 |
-
else {
|
73 |
-
// std::cout << "Response from server: " << readBuffer << std::endl;
|
74 |
-
kpts_results = decode_response(readBuffer);
|
75 |
-
}
|
76 |
-
curl_easy_cleanup(curl);
|
77 |
-
}
|
78 |
-
curl_global_cleanup();
|
79 |
-
|
80 |
-
return 0;
|
81 |
-
}
|
|
|
1 |
+
#include <curl/curl.h>
|
2 |
+
#include <opencv2/opencv.hpp>
|
3 |
+
#include "helper.h"
|
4 |
+
|
5 |
+
int main() {
|
6 |
+
std::string img_path =
|
7 |
+
"../../../datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg";
|
8 |
+
cv::Mat original_img = cv::imread(img_path, cv::IMREAD_GRAYSCALE);
|
9 |
+
|
10 |
+
if (original_img.empty()) {
|
11 |
+
throw std::runtime_error("Failed to decode image");
|
12 |
+
}
|
13 |
+
|
14 |
+
// Convert the image to Base64
|
15 |
+
std::string base64_img = image_to_base64(original_img);
|
16 |
+
|
17 |
+
// Convert the Base64 back to an image
|
18 |
+
cv::Mat decoded_img = base64_to_image(base64_img);
|
19 |
+
cv::imwrite("decoded_image.jpg", decoded_img);
|
20 |
+
cv::imwrite("original_img.jpg", original_img);
|
21 |
+
|
22 |
+
// The images should be identical
|
23 |
+
if (cv::countNonZero(original_img != decoded_img) != 0) {
|
24 |
+
std::cerr << "The images are not identical" << std::endl;
|
25 |
+
return -1;
|
26 |
+
} else {
|
27 |
+
std::cout << "The images are identical!" << std::endl;
|
28 |
+
}
|
29 |
+
|
30 |
+
// construct params
|
31 |
+
APIParams params{.data = {base64_img},
|
32 |
+
.max_keypoints = {100, 100},
|
33 |
+
.timestamps = {"0", "1"},
|
34 |
+
.grayscale = {0},
|
35 |
+
.image_hw = {{480, 640}, {240, 320}},
|
36 |
+
.feature_type = 0,
|
37 |
+
.rotates = {0.0f, 0.0f},
|
38 |
+
.scales = {1.0f, 1.0f},
|
39 |
+
.reference_points = {{1.23e+2f, 1.2e+1f},
|
40 |
+
{5.0e-1f, 3.0e-1f},
|
41 |
+
{2.3e+2f, 2.2e+1f},
|
42 |
+
{6.0e-1f, 4.0e-1f}},
|
43 |
+
.binarize = {1}};
|
44 |
+
|
45 |
+
KeyPointResults kpts_results;
|
46 |
+
|
47 |
+
// Convert the parameters to JSON
|
48 |
+
Json::Value jsonData = paramsToJson(params);
|
49 |
+
std::string url = "http://127.0.0.1:8001/v1/extract";
|
50 |
+
Json::StreamWriterBuilder writer;
|
51 |
+
std::string output = Json::writeString(writer, jsonData);
|
52 |
+
|
53 |
+
CURL* curl;
|
54 |
+
CURLcode res;
|
55 |
+
std::string readBuffer;
|
56 |
+
|
57 |
+
curl_global_init(CURL_GLOBAL_DEFAULT);
|
58 |
+
curl = curl_easy_init();
|
59 |
+
if (curl) {
|
60 |
+
struct curl_slist* hs = NULL;
|
61 |
+
hs = curl_slist_append(hs, "Content-Type: application/json");
|
62 |
+
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, hs);
|
63 |
+
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
|
64 |
+
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, output.c_str());
|
65 |
+
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, WriteCallback);
|
66 |
+
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &readBuffer);
|
67 |
+
res = curl_easy_perform(curl);
|
68 |
+
|
69 |
+
if (res != CURLE_OK)
|
70 |
+
fprintf(
|
71 |
+
stderr, "curl_easy_perform() failed: %s\n", curl_easy_strerror(res));
|
72 |
+
else {
|
73 |
+
// std::cout << "Response from server: " << readBuffer << std::endl;
|
74 |
+
kpts_results = decode_response(readBuffer);
|
75 |
+
}
|
76 |
+
curl_easy_cleanup(curl);
|
77 |
+
}
|
78 |
+
curl_global_cleanup();
|
79 |
+
|
80 |
+
return 0;
|
81 |
+
}
|
imcui/api/test/helper.h
CHANGED
@@ -1,405 +1,405 @@
|
|
1 |
-
|
2 |
-
#include <b64/encode.h>
|
3 |
-
#include <fstream>
|
4 |
-
#include <jsoncpp/json/json.h>
|
5 |
-
#include <opencv2/opencv.hpp>
|
6 |
-
#include <sstream>
|
7 |
-
#include <vector>
|
8 |
-
|
9 |
-
// base64 to image
|
10 |
-
#include <boost/archive/iterators/base64_from_binary.hpp>
|
11 |
-
#include <boost/archive/iterators/binary_from_base64.hpp>
|
12 |
-
#include <boost/archive/iterators/transform_width.hpp>
|
13 |
-
|
14 |
-
/// Parameters used in the API
|
15 |
-
struct APIParams {
|
16 |
-
/// A list of images, base64 encoded
|
17 |
-
std::vector<std::string> data;
|
18 |
-
|
19 |
-
/// The maximum number of keypoints to detect for each image
|
20 |
-
std::vector<int> max_keypoints;
|
21 |
-
|
22 |
-
/// The timestamps of the images
|
23 |
-
std::vector<std::string> timestamps;
|
24 |
-
|
25 |
-
/// Whether to convert the images to grayscale
|
26 |
-
bool grayscale;
|
27 |
-
|
28 |
-
/// The height and width of each image
|
29 |
-
std::vector<std::vector<int>> image_hw;
|
30 |
-
|
31 |
-
/// The type of feature detector to use
|
32 |
-
int feature_type;
|
33 |
-
|
34 |
-
/// The rotations of the images
|
35 |
-
std::vector<double> rotates;
|
36 |
-
|
37 |
-
/// The scales of the images
|
38 |
-
std::vector<double> scales;
|
39 |
-
|
40 |
-
/// The reference points of the images
|
41 |
-
std::vector<std::vector<float>> reference_points;
|
42 |
-
|
43 |
-
/// Whether to binarize the descriptors
|
44 |
-
bool binarize;
|
45 |
-
};
|
46 |
-
|
47 |
-
/**
|
48 |
-
* @brief Contains the results of a keypoint detector.
|
49 |
-
*
|
50 |
-
* @details Stores the keypoints and descriptors for each image.
|
51 |
-
*/
|
52 |
-
class KeyPointResults {
|
53 |
-
public:
|
54 |
-
KeyPointResults() {
|
55 |
-
}
|
56 |
-
|
57 |
-
/**
|
58 |
-
* @brief Constructor.
|
59 |
-
*
|
60 |
-
* @param kp The keypoints for each image.
|
61 |
-
*/
|
62 |
-
KeyPointResults(const std::vector<std::vector<cv::KeyPoint>>& kp,
|
63 |
-
const std::vector<cv::Mat>& desc)
|
64 |
-
: keypoints(kp), descriptors(desc) {
|
65 |
-
}
|
66 |
-
|
67 |
-
/**
|
68 |
-
* @brief Append keypoints to the result.
|
69 |
-
*
|
70 |
-
* @param kpts The keypoints to append.
|
71 |
-
*/
|
72 |
-
inline void append_keypoints(std::vector<cv::KeyPoint>& kpts) {
|
73 |
-
keypoints.emplace_back(kpts);
|
74 |
-
}
|
75 |
-
|
76 |
-
/**
|
77 |
-
* @brief Append descriptors to the result.
|
78 |
-
*
|
79 |
-
* @param desc The descriptors to append.
|
80 |
-
*/
|
81 |
-
inline void append_descriptors(cv::Mat& desc) {
|
82 |
-
descriptors.emplace_back(desc);
|
83 |
-
}
|
84 |
-
|
85 |
-
/**
|
86 |
-
* @brief Get the keypoints.
|
87 |
-
*
|
88 |
-
* @return The keypoints.
|
89 |
-
*/
|
90 |
-
inline std::vector<std::vector<cv::KeyPoint>> get_keypoints() {
|
91 |
-
return keypoints;
|
92 |
-
}
|
93 |
-
|
94 |
-
/**
|
95 |
-
* @brief Get the descriptors.
|
96 |
-
*
|
97 |
-
* @return The descriptors.
|
98 |
-
*/
|
99 |
-
inline std::vector<cv::Mat> get_descriptors() {
|
100 |
-
return descriptors;
|
101 |
-
}
|
102 |
-
|
103 |
-
private:
|
104 |
-
std::vector<std::vector<cv::KeyPoint>> keypoints;
|
105 |
-
std::vector<cv::Mat> descriptors;
|
106 |
-
std::vector<std::vector<float>> scores;
|
107 |
-
};
|
108 |
-
|
109 |
-
/**
|
110 |
-
* @brief Decodes a base64 encoded string.
|
111 |
-
*
|
112 |
-
* @param base64 The base64 encoded string to decode.
|
113 |
-
* @return The decoded string.
|
114 |
-
*/
|
115 |
-
std::string base64_decode(const std::string& base64) {
|
116 |
-
using namespace boost::archive::iterators;
|
117 |
-
using It = transform_width<binary_from_base64<std::string::const_iterator>, 8, 6>;
|
118 |
-
|
119 |
-
// Find the position of the last non-whitespace character
|
120 |
-
auto end = base64.find_last_not_of(" \t\n\r");
|
121 |
-
if (end != std::string::npos) {
|
122 |
-
// Move one past the last non-whitespace character
|
123 |
-
end += 1;
|
124 |
-
}
|
125 |
-
|
126 |
-
// Decode the base64 string and return the result
|
127 |
-
return std::string(It(base64.begin()), It(base64.begin() + end));
|
128 |
-
}
|
129 |
-
|
130 |
-
/**
|
131 |
-
* @brief Decodes a base64 string into an OpenCV image
|
132 |
-
*
|
133 |
-
* @param base64 The base64 encoded string
|
134 |
-
* @return The decoded OpenCV image
|
135 |
-
*/
|
136 |
-
cv::Mat base64_to_image(const std::string& base64) {
|
137 |
-
// Decode the base64 string
|
138 |
-
std::string decodedStr = base64_decode(base64);
|
139 |
-
|
140 |
-
// Decode the image
|
141 |
-
std::vector<uchar> data(decodedStr.begin(), decodedStr.end());
|
142 |
-
cv::Mat img = cv::imdecode(data, cv::IMREAD_GRAYSCALE);
|
143 |
-
|
144 |
-
// Check for errors
|
145 |
-
if (img.empty()) {
|
146 |
-
throw std::runtime_error("Failed to decode image");
|
147 |
-
}
|
148 |
-
|
149 |
-
return img;
|
150 |
-
}
|
151 |
-
|
152 |
-
/**
|
153 |
-
* @brief Encodes an OpenCV image into a base64 string
|
154 |
-
*
|
155 |
-
* This function takes an OpenCV image and encodes it into a base64 string.
|
156 |
-
* The image is first encoded as a PNG image, and then the resulting
|
157 |
-
* bytes are encoded as a base64 string.
|
158 |
-
*
|
159 |
-
* @param img The OpenCV image
|
160 |
-
* @return The base64 encoded string
|
161 |
-
*
|
162 |
-
* @throws std::runtime_error if the image is empty or encoding fails
|
163 |
-
*/
|
164 |
-
std::string image_to_base64(cv::Mat& img) {
|
165 |
-
if (img.empty()) {
|
166 |
-
throw std::runtime_error("Failed to read image");
|
167 |
-
}
|
168 |
-
|
169 |
-
// Encode the image as a PNG
|
170 |
-
std::vector<uchar> buf;
|
171 |
-
if (!cv::imencode(".png", img, buf)) {
|
172 |
-
throw std::runtime_error("Failed to encode image");
|
173 |
-
}
|
174 |
-
|
175 |
-
// Encode the bytes as a base64 string
|
176 |
-
using namespace boost::archive::iterators;
|
177 |
-
using It =
|
178 |
-
base64_from_binary<transform_width<std::vector<uchar>::const_iterator, 6, 8>>;
|
179 |
-
std::string base64(It(buf.begin()), It(buf.end()));
|
180 |
-
|
181 |
-
// Pad the string with '=' characters to a multiple of 4 bytes
|
182 |
-
base64.append((3 - buf.size() % 3) % 3, '=');
|
183 |
-
|
184 |
-
return base64;
|
185 |
-
}
|
186 |
-
|
187 |
-
/**
|
188 |
-
* @brief Callback function for libcurl to write data to a string
|
189 |
-
*
|
190 |
-
* This function is used as a callback for libcurl to write data to a string.
|
191 |
-
* It takes the contents, size, and nmemb as parameters, and writes the data to
|
192 |
-
* the string.
|
193 |
-
*
|
194 |
-
* @param contents The data to write
|
195 |
-
* @param size The size of the data
|
196 |
-
* @param nmemb The number of members in the data
|
197 |
-
* @param s The string to write the data to
|
198 |
-
* @return The number of bytes written
|
199 |
-
*/
|
200 |
-
size_t WriteCallback(void* contents, size_t size, size_t nmemb, std::string* s) {
|
201 |
-
size_t newLength = size * nmemb;
|
202 |
-
try {
|
203 |
-
// Resize the string to fit the new data
|
204 |
-
s->resize(s->size() + newLength);
|
205 |
-
} catch (std::bad_alloc& e) {
|
206 |
-
// If there's an error allocating memory, return 0
|
207 |
-
return 0;
|
208 |
-
}
|
209 |
-
|
210 |
-
// Copy the data to the string
|
211 |
-
std::copy(static_cast<const char*>(contents),
|
212 |
-
static_cast<const char*>(contents) + newLength,
|
213 |
-
s->begin() + s->size() - newLength);
|
214 |
-
return newLength;
|
215 |
-
}
|
216 |
-
|
217 |
-
// Helper functions
|
218 |
-
|
219 |
-
/**
|
220 |
-
* @brief Helper function to convert a type to a Json::Value
|
221 |
-
*
|
222 |
-
* This function takes a value of type T and converts it to a Json::Value.
|
223 |
-
* It is used to simplify the process of converting a type to a Json::Value.
|
224 |
-
*
|
225 |
-
* @param val The value to convert
|
226 |
-
* @return The converted Json::Value
|
227 |
-
*/
|
228 |
-
template <typename T> Json::Value toJson(const T& val) {
|
229 |
-
return Json::Value(val);
|
230 |
-
}
|
231 |
-
|
232 |
-
/**
|
233 |
-
* @brief Converts a vector to a Json::Value
|
234 |
-
*
|
235 |
-
* This function takes a vector of type T and converts it to a Json::Value.
|
236 |
-
* Each element in the vector is appended to the Json::Value array.
|
237 |
-
*
|
238 |
-
* @param vec The vector to convert to Json::Value
|
239 |
-
* @return The Json::Value representing the vector
|
240 |
-
*/
|
241 |
-
template <typename T> Json::Value vectorToJson(const std::vector<T>& vec) {
|
242 |
-
Json::Value json(Json::arrayValue);
|
243 |
-
for (const auto& item : vec) {
|
244 |
-
json.append(item);
|
245 |
-
}
|
246 |
-
return json;
|
247 |
-
}
|
248 |
-
|
249 |
-
/**
|
250 |
-
* @brief Converts a nested vector to a Json::Value
|
251 |
-
*
|
252 |
-
* This function takes a nested vector of type T and converts it to a
|
253 |
-
* Json::Value. Each sub-vector is converted to a Json::Value array and appended
|
254 |
-
* to the main Json::Value array.
|
255 |
-
*
|
256 |
-
* @param vec The nested vector to convert to Json::Value
|
257 |
-
* @return The Json::Value representing the nested vector
|
258 |
-
*/
|
259 |
-
template <typename T>
|
260 |
-
Json::Value nestedVectorToJson(const std::vector<std::vector<T>>& vec) {
|
261 |
-
Json::Value json(Json::arrayValue);
|
262 |
-
for (const auto& subVec : vec) {
|
263 |
-
json.append(vectorToJson(subVec));
|
264 |
-
}
|
265 |
-
return json;
|
266 |
-
}
|
267 |
-
|
268 |
-
/**
|
269 |
-
* @brief Converts the APIParams struct to a Json::Value
|
270 |
-
*
|
271 |
-
* This function takes an APIParams struct and converts it to a Json::Value.
|
272 |
-
* The Json::Value is a JSON object with the following fields:
|
273 |
-
* - data: a JSON array of base64 encoded images
|
274 |
-
* - max_keypoints: a JSON array of integers, max number of keypoints for each
|
275 |
-
* image
|
276 |
-
* - timestamps: a JSON array of timestamps, one for each image
|
277 |
-
* - grayscale: a JSON boolean, whether to convert images to grayscale
|
278 |
-
* - image_hw: a nested JSON array, each sub-array contains the height and width
|
279 |
-
* of an image
|
280 |
-
* - feature_type: a JSON integer, the type of feature detector to use
|
281 |
-
* - rotates: a JSON array of doubles, the rotation of each image
|
282 |
-
* - scales: a JSON array of doubles, the scale of each image
|
283 |
-
* - reference_points: a nested JSON array, each sub-array contains the
|
284 |
-
* reference points of an image
|
285 |
-
* - binarize: a JSON boolean, whether to binarize the descriptors
|
286 |
-
*
|
287 |
-
* @param params The APIParams struct to convert
|
288 |
-
* @return The Json::Value representing the APIParams struct
|
289 |
-
*/
|
290 |
-
Json::Value paramsToJson(const APIParams& params) {
|
291 |
-
Json::Value json;
|
292 |
-
json["data"] = vectorToJson(params.data);
|
293 |
-
json["max_keypoints"] = vectorToJson(params.max_keypoints);
|
294 |
-
json["timestamps"] = vectorToJson(params.timestamps);
|
295 |
-
json["grayscale"] = toJson(params.grayscale);
|
296 |
-
json["image_hw"] = nestedVectorToJson(params.image_hw);
|
297 |
-
json["feature_type"] = toJson(params.feature_type);
|
298 |
-
json["rotates"] = vectorToJson(params.rotates);
|
299 |
-
json["scales"] = vectorToJson(params.scales);
|
300 |
-
json["reference_points"] = nestedVectorToJson(params.reference_points);
|
301 |
-
json["binarize"] = toJson(params.binarize);
|
302 |
-
return json;
|
303 |
-
}
|
304 |
-
|
305 |
-
template <typename T> cv::Mat jsonToMat(Json::Value json) {
|
306 |
-
int rows = json.size();
|
307 |
-
int cols = json[0].size();
|
308 |
-
|
309 |
-
// Create a single array to hold all the data.
|
310 |
-
std::vector<T> data;
|
311 |
-
data.reserve(rows * cols);
|
312 |
-
|
313 |
-
for (int i = 0; i < rows; i++) {
|
314 |
-
for (int j = 0; j < cols; j++) {
|
315 |
-
data.push_back(static_cast<T>(json[i][j].asInt()));
|
316 |
-
}
|
317 |
-
}
|
318 |
-
|
319 |
-
// Create a cv::Mat object that points to the data.
|
320 |
-
cv::Mat mat(rows, cols, CV_8UC1,
|
321 |
-
data.data()); // Change the type if necessary.
|
322 |
-
// cv::Mat mat(cols, rows,CV_8UC1, data.data()); // Change the type if
|
323 |
-
// necessary.
|
324 |
-
|
325 |
-
return mat;
|
326 |
-
}
|
327 |
-
|
328 |
-
/**
|
329 |
-
* @brief Decodes the response of the server and prints the keypoints
|
330 |
-
*
|
331 |
-
* This function takes the response of the server, a JSON string, and decodes
|
332 |
-
* it. It then prints the keypoints and draws them on the original image.
|
333 |
-
*
|
334 |
-
* @param response The response of the server
|
335 |
-
* @return The keypoints and descriptors
|
336 |
-
*/
|
337 |
-
KeyPointResults decode_response(const std::string& response, bool viz = true) {
|
338 |
-
Json::CharReaderBuilder builder;
|
339 |
-
Json::CharReader* reader = builder.newCharReader();
|
340 |
-
|
341 |
-
Json::Value jsonData;
|
342 |
-
std::string errors;
|
343 |
-
|
344 |
-
// Parse the JSON response
|
345 |
-
bool parsingSuccessful = reader->parse(
|
346 |
-
response.c_str(), response.c_str() + response.size(), &jsonData, &errors);
|
347 |
-
delete reader;
|
348 |
-
|
349 |
-
if (!parsingSuccessful) {
|
350 |
-
// Handle error
|
351 |
-
std::cout << "Failed to parse the JSON, errors:" << std::endl;
|
352 |
-
std::cout << errors << std::endl;
|
353 |
-
return KeyPointResults();
|
354 |
-
}
|
355 |
-
|
356 |
-
KeyPointResults kpts_results;
|
357 |
-
|
358 |
-
// Iterate over the images
|
359 |
-
for (const auto& jsonItem : jsonData) {
|
360 |
-
auto jkeypoints = jsonItem["keypoints"];
|
361 |
-
auto jkeypoints_orig = jsonItem["keypoints_orig"];
|
362 |
-
auto jdescriptors = jsonItem["descriptors"];
|
363 |
-
auto jscores = jsonItem["scores"];
|
364 |
-
auto jimageSize = jsonItem["image_size"];
|
365 |
-
auto joriginalSize = jsonItem["original_size"];
|
366 |
-
auto jsize = jsonItem["size"];
|
367 |
-
|
368 |
-
std::vector<cv::KeyPoint> vkeypoints;
|
369 |
-
std::vector<float> vscores;
|
370 |
-
|
371 |
-
// Iterate over the keypoints
|
372 |
-
int counter = 0;
|
373 |
-
for (const auto& keypoint : jkeypoints_orig) {
|
374 |
-
if (counter < 10) {
|
375 |
-
// Print the first 10 keypoints
|
376 |
-
std::cout << keypoint[0].asFloat() << ", " << keypoint[1].asFloat()
|
377 |
-
<< std::endl;
|
378 |
-
}
|
379 |
-
counter++;
|
380 |
-
// Convert the Json::Value to a cv::KeyPoint
|
381 |
-
vkeypoints.emplace_back(
|
382 |
-
cv::KeyPoint(keypoint[0].asFloat(), keypoint[1].asFloat(), 0.0));
|
383 |
-
}
|
384 |
-
|
385 |
-
if (viz && jsonItem.isMember("image_orig")) {
|
386 |
-
auto jimg_orig = jsonItem["image_orig"];
|
387 |
-
cv::Mat img = jsonToMat<uchar>(jimg_orig);
|
388 |
-
cv::imwrite("viz_image_orig.jpg", img);
|
389 |
-
|
390 |
-
// Draw keypoints on the image
|
391 |
-
cv::Mat imgWithKeypoints;
|
392 |
-
cv::drawKeypoints(img, vkeypoints, imgWithKeypoints, cv::Scalar(0, 0, 255));
|
393 |
-
|
394 |
-
// Write the image with keypoints
|
395 |
-
std::string filename = "viz_image_orig_keypoints.jpg";
|
396 |
-
cv::imwrite(filename, imgWithKeypoints);
|
397 |
-
}
|
398 |
-
|
399 |
-
// Iterate over the descriptors
|
400 |
-
cv::Mat descriptors = jsonToMat<uchar>(jdescriptors);
|
401 |
-
kpts_results.append_keypoints(vkeypoints);
|
402 |
-
kpts_results.append_descriptors(descriptors);
|
403 |
-
}
|
404 |
-
return kpts_results;
|
405 |
-
}
|
|
|
1 |
+
|
2 |
+
#include <b64/encode.h>
|
3 |
+
#include <fstream>
|
4 |
+
#include <jsoncpp/json/json.h>
|
5 |
+
#include <opencv2/opencv.hpp>
|
6 |
+
#include <sstream>
|
7 |
+
#include <vector>
|
8 |
+
|
9 |
+
// base64 to image
|
10 |
+
#include <boost/archive/iterators/base64_from_binary.hpp>
|
11 |
+
#include <boost/archive/iterators/binary_from_base64.hpp>
|
12 |
+
#include <boost/archive/iterators/transform_width.hpp>
|
13 |
+
|
14 |
+
/// Parameters used in the API
|
15 |
+
struct APIParams {
|
16 |
+
/// A list of images, base64 encoded
|
17 |
+
std::vector<std::string> data;
|
18 |
+
|
19 |
+
/// The maximum number of keypoints to detect for each image
|
20 |
+
std::vector<int> max_keypoints;
|
21 |
+
|
22 |
+
/// The timestamps of the images
|
23 |
+
std::vector<std::string> timestamps;
|
24 |
+
|
25 |
+
/// Whether to convert the images to grayscale
|
26 |
+
bool grayscale;
|
27 |
+
|
28 |
+
/// The height and width of each image
|
29 |
+
std::vector<std::vector<int>> image_hw;
|
30 |
+
|
31 |
+
/// The type of feature detector to use
|
32 |
+
int feature_type;
|
33 |
+
|
34 |
+
/// The rotations of the images
|
35 |
+
std::vector<double> rotates;
|
36 |
+
|
37 |
+
/// The scales of the images
|
38 |
+
std::vector<double> scales;
|
39 |
+
|
40 |
+
/// The reference points of the images
|
41 |
+
std::vector<std::vector<float>> reference_points;
|
42 |
+
|
43 |
+
/// Whether to binarize the descriptors
|
44 |
+
bool binarize;
|
45 |
+
};
|
46 |
+
|
47 |
+
/**
|
48 |
+
* @brief Contains the results of a keypoint detector.
|
49 |
+
*
|
50 |
+
* @details Stores the keypoints and descriptors for each image.
|
51 |
+
*/
|
52 |
+
class KeyPointResults {
|
53 |
+
public:
|
54 |
+
KeyPointResults() {
|
55 |
+
}
|
56 |
+
|
57 |
+
/**
|
58 |
+
* @brief Constructor.
|
59 |
+
*
|
60 |
+
* @param kp The keypoints for each image.
|
61 |
+
*/
|
62 |
+
KeyPointResults(const std::vector<std::vector<cv::KeyPoint>>& kp,
|
63 |
+
const std::vector<cv::Mat>& desc)
|
64 |
+
: keypoints(kp), descriptors(desc) {
|
65 |
+
}
|
66 |
+
|
67 |
+
/**
|
68 |
+
* @brief Append keypoints to the result.
|
69 |
+
*
|
70 |
+
* @param kpts The keypoints to append.
|
71 |
+
*/
|
72 |
+
inline void append_keypoints(std::vector<cv::KeyPoint>& kpts) {
|
73 |
+
keypoints.emplace_back(kpts);
|
74 |
+
}
|
75 |
+
|
76 |
+
/**
|
77 |
+
* @brief Append descriptors to the result.
|
78 |
+
*
|
79 |
+
* @param desc The descriptors to append.
|
80 |
+
*/
|
81 |
+
inline void append_descriptors(cv::Mat& desc) {
|
82 |
+
descriptors.emplace_back(desc);
|
83 |
+
}
|
84 |
+
|
85 |
+
/**
|
86 |
+
* @brief Get the keypoints.
|
87 |
+
*
|
88 |
+
* @return The keypoints.
|
89 |
+
*/
|
90 |
+
inline std::vector<std::vector<cv::KeyPoint>> get_keypoints() {
|
91 |
+
return keypoints;
|
92 |
+
}
|
93 |
+
|
94 |
+
/**
|
95 |
+
* @brief Get the descriptors.
|
96 |
+
*
|
97 |
+
* @return The descriptors.
|
98 |
+
*/
|
99 |
+
inline std::vector<cv::Mat> get_descriptors() {
|
100 |
+
return descriptors;
|
101 |
+
}
|
102 |
+
|
103 |
+
private:
|
104 |
+
std::vector<std::vector<cv::KeyPoint>> keypoints;
|
105 |
+
std::vector<cv::Mat> descriptors;
|
106 |
+
std::vector<std::vector<float>> scores;
|
107 |
+
};
|
108 |
+
|
109 |
+
/**
|
110 |
+
* @brief Decodes a base64 encoded string.
|
111 |
+
*
|
112 |
+
* @param base64 The base64 encoded string to decode.
|
113 |
+
* @return The decoded string.
|
114 |
+
*/
|
115 |
+
std::string base64_decode(const std::string& base64) {
|
116 |
+
using namespace boost::archive::iterators;
|
117 |
+
using It = transform_width<binary_from_base64<std::string::const_iterator>, 8, 6>;
|
118 |
+
|
119 |
+
// Find the position of the last non-whitespace character
|
120 |
+
auto end = base64.find_last_not_of(" \t\n\r");
|
121 |
+
if (end != std::string::npos) {
|
122 |
+
// Move one past the last non-whitespace character
|
123 |
+
end += 1;
|
124 |
+
}
|
125 |
+
|
126 |
+
// Decode the base64 string and return the result
|
127 |
+
return std::string(It(base64.begin()), It(base64.begin() + end));
|
128 |
+
}
|
129 |
+
|
130 |
+
/**
|
131 |
+
* @brief Decodes a base64 string into an OpenCV image
|
132 |
+
*
|
133 |
+
* @param base64 The base64 encoded string
|
134 |
+
* @return The decoded OpenCV image
|
135 |
+
*/
|
136 |
+
cv::Mat base64_to_image(const std::string& base64) {
|
137 |
+
// Decode the base64 string
|
138 |
+
std::string decodedStr = base64_decode(base64);
|
139 |
+
|
140 |
+
// Decode the image
|
141 |
+
std::vector<uchar> data(decodedStr.begin(), decodedStr.end());
|
142 |
+
cv::Mat img = cv::imdecode(data, cv::IMREAD_GRAYSCALE);
|
143 |
+
|
144 |
+
// Check for errors
|
145 |
+
if (img.empty()) {
|
146 |
+
throw std::runtime_error("Failed to decode image");
|
147 |
+
}
|
148 |
+
|
149 |
+
return img;
|
150 |
+
}
|
151 |
+
|
152 |
+
/**
|
153 |
+
* @brief Encodes an OpenCV image into a base64 string
|
154 |
+
*
|
155 |
+
* This function takes an OpenCV image and encodes it into a base64 string.
|
156 |
+
* The image is first encoded as a PNG image, and then the resulting
|
157 |
+
* bytes are encoded as a base64 string.
|
158 |
+
*
|
159 |
+
* @param img The OpenCV image
|
160 |
+
* @return The base64 encoded string
|
161 |
+
*
|
162 |
+
* @throws std::runtime_error if the image is empty or encoding fails
|
163 |
+
*/
|
164 |
+
std::string image_to_base64(cv::Mat& img) {
|
165 |
+
if (img.empty()) {
|
166 |
+
throw std::runtime_error("Failed to read image");
|
167 |
+
}
|
168 |
+
|
169 |
+
// Encode the image as a PNG
|
170 |
+
std::vector<uchar> buf;
|
171 |
+
if (!cv::imencode(".png", img, buf)) {
|
172 |
+
throw std::runtime_error("Failed to encode image");
|
173 |
+
}
|
174 |
+
|
175 |
+
// Encode the bytes as a base64 string
|
176 |
+
using namespace boost::archive::iterators;
|
177 |
+
using It =
|
178 |
+
base64_from_binary<transform_width<std::vector<uchar>::const_iterator, 6, 8>>;
|
179 |
+
std::string base64(It(buf.begin()), It(buf.end()));
|
180 |
+
|
181 |
+
// Pad the string with '=' characters to a multiple of 4 bytes
|
182 |
+
base64.append((3 - buf.size() % 3) % 3, '=');
|
183 |
+
|
184 |
+
return base64;
|
185 |
+
}
|
186 |
+
|
187 |
+
/**
|
188 |
+
* @brief Callback function for libcurl to write data to a string
|
189 |
+
*
|
190 |
+
* This function is used as a callback for libcurl to write data to a string.
|
191 |
+
* It takes the contents, size, and nmemb as parameters, and writes the data to
|
192 |
+
* the string.
|
193 |
+
*
|
194 |
+
* @param contents The data to write
|
195 |
+
* @param size The size of the data
|
196 |
+
* @param nmemb The number of members in the data
|
197 |
+
* @param s The string to write the data to
|
198 |
+
* @return The number of bytes written
|
199 |
+
*/
|
200 |
+
size_t WriteCallback(void* contents, size_t size, size_t nmemb, std::string* s) {
|
201 |
+
size_t newLength = size * nmemb;
|
202 |
+
try {
|
203 |
+
// Resize the string to fit the new data
|
204 |
+
s->resize(s->size() + newLength);
|
205 |
+
} catch (std::bad_alloc& e) {
|
206 |
+
// If there's an error allocating memory, return 0
|
207 |
+
return 0;
|
208 |
+
}
|
209 |
+
|
210 |
+
// Copy the data to the string
|
211 |
+
std::copy(static_cast<const char*>(contents),
|
212 |
+
static_cast<const char*>(contents) + newLength,
|
213 |
+
s->begin() + s->size() - newLength);
|
214 |
+
return newLength;
|
215 |
+
}
|
216 |
+
|
217 |
+
// Helper functions
|
218 |
+
|
219 |
+
/**
|
220 |
+
* @brief Helper function to convert a type to a Json::Value
|
221 |
+
*
|
222 |
+
* This function takes a value of type T and converts it to a Json::Value.
|
223 |
+
* It is used to simplify the process of converting a type to a Json::Value.
|
224 |
+
*
|
225 |
+
* @param val The value to convert
|
226 |
+
* @return The converted Json::Value
|
227 |
+
*/
|
228 |
+
template <typename T> Json::Value toJson(const T& val) {
|
229 |
+
return Json::Value(val);
|
230 |
+
}
|
231 |
+
|
232 |
+
/**
|
233 |
+
* @brief Converts a vector to a Json::Value
|
234 |
+
*
|
235 |
+
* This function takes a vector of type T and converts it to a Json::Value.
|
236 |
+
* Each element in the vector is appended to the Json::Value array.
|
237 |
+
*
|
238 |
+
* @param vec The vector to convert to Json::Value
|
239 |
+
* @return The Json::Value representing the vector
|
240 |
+
*/
|
241 |
+
template <typename T> Json::Value vectorToJson(const std::vector<T>& vec) {
|
242 |
+
Json::Value json(Json::arrayValue);
|
243 |
+
for (const auto& item : vec) {
|
244 |
+
json.append(item);
|
245 |
+
}
|
246 |
+
return json;
|
247 |
+
}
|
248 |
+
|
249 |
+
/**
|
250 |
+
* @brief Converts a nested vector to a Json::Value
|
251 |
+
*
|
252 |
+
* This function takes a nested vector of type T and converts it to a
|
253 |
+
* Json::Value. Each sub-vector is converted to a Json::Value array and appended
|
254 |
+
* to the main Json::Value array.
|
255 |
+
*
|
256 |
+
* @param vec The nested vector to convert to Json::Value
|
257 |
+
* @return The Json::Value representing the nested vector
|
258 |
+
*/
|
259 |
+
template <typename T>
|
260 |
+
Json::Value nestedVectorToJson(const std::vector<std::vector<T>>& vec) {
|
261 |
+
Json::Value json(Json::arrayValue);
|
262 |
+
for (const auto& subVec : vec) {
|
263 |
+
json.append(vectorToJson(subVec));
|
264 |
+
}
|
265 |
+
return json;
|
266 |
+
}
|
267 |
+
|
268 |
+
/**
|
269 |
+
* @brief Converts the APIParams struct to a Json::Value
|
270 |
+
*
|
271 |
+
* This function takes an APIParams struct and converts it to a Json::Value.
|
272 |
+
* The Json::Value is a JSON object with the following fields:
|
273 |
+
* - data: a JSON array of base64 encoded images
|
274 |
+
* - max_keypoints: a JSON array of integers, max number of keypoints for each
|
275 |
+
* image
|
276 |
+
* - timestamps: a JSON array of timestamps, one for each image
|
277 |
+
* - grayscale: a JSON boolean, whether to convert images to grayscale
|
278 |
+
* - image_hw: a nested JSON array, each sub-array contains the height and width
|
279 |
+
* of an image
|
280 |
+
* - feature_type: a JSON integer, the type of feature detector to use
|
281 |
+
* - rotates: a JSON array of doubles, the rotation of each image
|
282 |
+
* - scales: a JSON array of doubles, the scale of each image
|
283 |
+
* - reference_points: a nested JSON array, each sub-array contains the
|
284 |
+
* reference points of an image
|
285 |
+
* - binarize: a JSON boolean, whether to binarize the descriptors
|
286 |
+
*
|
287 |
+
* @param params The APIParams struct to convert
|
288 |
+
* @return The Json::Value representing the APIParams struct
|
289 |
+
*/
|
290 |
+
Json::Value paramsToJson(const APIParams& params) {
|
291 |
+
Json::Value json;
|
292 |
+
json["data"] = vectorToJson(params.data);
|
293 |
+
json["max_keypoints"] = vectorToJson(params.max_keypoints);
|
294 |
+
json["timestamps"] = vectorToJson(params.timestamps);
|
295 |
+
json["grayscale"] = toJson(params.grayscale);
|
296 |
+
json["image_hw"] = nestedVectorToJson(params.image_hw);
|
297 |
+
json["feature_type"] = toJson(params.feature_type);
|
298 |
+
json["rotates"] = vectorToJson(params.rotates);
|
299 |
+
json["scales"] = vectorToJson(params.scales);
|
300 |
+
json["reference_points"] = nestedVectorToJson(params.reference_points);
|
301 |
+
json["binarize"] = toJson(params.binarize);
|
302 |
+
return json;
|
303 |
+
}
|
304 |
+
|
305 |
+
template <typename T> cv::Mat jsonToMat(Json::Value json) {
|
306 |
+
int rows = json.size();
|
307 |
+
int cols = json[0].size();
|
308 |
+
|
309 |
+
// Create a single array to hold all the data.
|
310 |
+
std::vector<T> data;
|
311 |
+
data.reserve(rows * cols);
|
312 |
+
|
313 |
+
for (int i = 0; i < rows; i++) {
|
314 |
+
for (int j = 0; j < cols; j++) {
|
315 |
+
data.push_back(static_cast<T>(json[i][j].asInt()));
|
316 |
+
}
|
317 |
+
}
|
318 |
+
|
319 |
+
// Create a cv::Mat object that points to the data.
|
320 |
+
cv::Mat mat(rows, cols, CV_8UC1,
|
321 |
+
data.data()); // Change the type if necessary.
|
322 |
+
// cv::Mat mat(cols, rows,CV_8UC1, data.data()); // Change the type if
|
323 |
+
// necessary.
|
324 |
+
|
325 |
+
return mat;
|
326 |
+
}
|
327 |
+
|
328 |
+
/**
|
329 |
+
* @brief Decodes the response of the server and prints the keypoints
|
330 |
+
*
|
331 |
+
* This function takes the response of the server, a JSON string, and decodes
|
332 |
+
* it. It then prints the keypoints and draws them on the original image.
|
333 |
+
*
|
334 |
+
* @param response The response of the server
|
335 |
+
* @return The keypoints and descriptors
|
336 |
+
*/
|
337 |
+
KeyPointResults decode_response(const std::string& response, bool viz = true) {
|
338 |
+
Json::CharReaderBuilder builder;
|
339 |
+
Json::CharReader* reader = builder.newCharReader();
|
340 |
+
|
341 |
+
Json::Value jsonData;
|
342 |
+
std::string errors;
|
343 |
+
|
344 |
+
// Parse the JSON response
|
345 |
+
bool parsingSuccessful = reader->parse(
|
346 |
+
response.c_str(), response.c_str() + response.size(), &jsonData, &errors);
|
347 |
+
delete reader;
|
348 |
+
|
349 |
+
if (!parsingSuccessful) {
|
350 |
+
// Handle error
|
351 |
+
std::cout << "Failed to parse the JSON, errors:" << std::endl;
|
352 |
+
std::cout << errors << std::endl;
|
353 |
+
return KeyPointResults();
|
354 |
+
}
|
355 |
+
|
356 |
+
KeyPointResults kpts_results;
|
357 |
+
|
358 |
+
// Iterate over the images
|
359 |
+
for (const auto& jsonItem : jsonData) {
|
360 |
+
auto jkeypoints = jsonItem["keypoints"];
|
361 |
+
auto jkeypoints_orig = jsonItem["keypoints_orig"];
|
362 |
+
auto jdescriptors = jsonItem["descriptors"];
|
363 |
+
auto jscores = jsonItem["scores"];
|
364 |
+
auto jimageSize = jsonItem["image_size"];
|
365 |
+
auto joriginalSize = jsonItem["original_size"];
|
366 |
+
auto jsize = jsonItem["size"];
|
367 |
+
|
368 |
+
std::vector<cv::KeyPoint> vkeypoints;
|
369 |
+
std::vector<float> vscores;
|
370 |
+
|
371 |
+
// Iterate over the keypoints
|
372 |
+
int counter = 0;
|
373 |
+
for (const auto& keypoint : jkeypoints_orig) {
|
374 |
+
if (counter < 10) {
|
375 |
+
// Print the first 10 keypoints
|
376 |
+
std::cout << keypoint[0].asFloat() << ", " << keypoint[1].asFloat()
|
377 |
+
<< std::endl;
|
378 |
+
}
|
379 |
+
counter++;
|
380 |
+
// Convert the Json::Value to a cv::KeyPoint
|
381 |
+
vkeypoints.emplace_back(
|
382 |
+
cv::KeyPoint(keypoint[0].asFloat(), keypoint[1].asFloat(), 0.0));
|
383 |
+
}
|
384 |
+
|
385 |
+
if (viz && jsonItem.isMember("image_orig")) {
|
386 |
+
auto jimg_orig = jsonItem["image_orig"];
|
387 |
+
cv::Mat img = jsonToMat<uchar>(jimg_orig);
|
388 |
+
cv::imwrite("viz_image_orig.jpg", img);
|
389 |
+
|
390 |
+
// Draw keypoints on the image
|
391 |
+
cv::Mat imgWithKeypoints;
|
392 |
+
cv::drawKeypoints(img, vkeypoints, imgWithKeypoints, cv::Scalar(0, 0, 255));
|
393 |
+
|
394 |
+
// Write the image with keypoints
|
395 |
+
std::string filename = "viz_image_orig_keypoints.jpg";
|
396 |
+
cv::imwrite(filename, imgWithKeypoints);
|
397 |
+
}
|
398 |
+
|
399 |
+
// Iterate over the descriptors
|
400 |
+
cv::Mat descriptors = jsonToMat<uchar>(jdescriptors);
|
401 |
+
kpts_results.append_keypoints(vkeypoints);
|
402 |
+
kpts_results.append_descriptors(descriptors);
|
403 |
+
}
|
404 |
+
return kpts_results;
|
405 |
+
}
|
imcui/ui/__init__.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
__version__ = "1.0
|
2 |
-
|
3 |
-
|
4 |
-
def get_version():
|
5 |
-
return __version__
|
|
|
1 |
+
__version__ = "1.3.0"
|
2 |
+
|
3 |
+
|
4 |
+
def get_version():
|
5 |
+
return __version__
|
imcui/ui/app_class.py
CHANGED
@@ -1,820 +1,816 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
from typing import Any, Dict, Optional, Tuple
|
3 |
-
|
4 |
-
import gradio as gr
|
5 |
-
import numpy as np
|
6 |
-
from easydict import EasyDict as edict
|
7 |
-
from omegaconf import OmegaConf
|
8 |
-
|
9 |
-
from .sfm import SfmEngine
|
10 |
-
from .utils import (
|
11 |
-
GRADIO_VERSION,
|
12 |
-
gen_examples,
|
13 |
-
generate_warp_images,
|
14 |
-
get_matcher_zoo,
|
15 |
-
load_config,
|
16 |
-
ransac_zoo,
|
17 |
-
run_matching,
|
18 |
-
run_ransac,
|
19 |
-
send_to_match,
|
20 |
-
)
|
21 |
-
|
22 |
-
DESCRIPTION = """
|
23 |
-
# Image Matching WebUI
|
24 |
-
This Space demonstrates [Image Matching WebUI](https://github.com/Vincentqyw/image-matching-webui) by vincent qin. Feel free to play with it, or duplicate to run image matching without a queue!
|
25 |
-
<br/>
|
26 |
-
🔎 For more details about supported local features and matchers, please refer to https://github.com/Vincentqyw/image-matching-webui
|
27 |
-
|
28 |
-
🚀 All algorithms run on CPU for inference, causing slow speeds and high latency. For faster inference, please download the [source code](https://github.com/Vincentqyw/image-matching-webui) for local deployment.
|
29 |
-
|
30 |
-
🐛 Your feedback is valuable to me. Please do not hesitate to report any bugs [here](https://github.com/Vincentqyw/image-matching-webui/issues).
|
31 |
-
"""
|
32 |
-
|
33 |
-
CSS = """
|
34 |
-
#warning {background-color: #FFCCCB}
|
35 |
-
.logs_class textarea {font-size: 12px !important}
|
36 |
-
"""
|
37 |
-
|
38 |
-
|
39 |
-
class ImageMatchingApp:
|
40 |
-
def __init__(self, server_name="0.0.0.0", server_port=7860, **kwargs):
|
41 |
-
self.server_name = server_name
|
42 |
-
self.server_port = server_port
|
43 |
-
self.config_path = kwargs.get("config", Path(__file__).parent / "config.yaml")
|
44 |
-
self.cfg = load_config(self.config_path)
|
45 |
-
self.matcher_zoo = get_matcher_zoo(self.cfg["matcher_zoo"])
|
46 |
-
self.app = None
|
47 |
-
self.example_data_root = kwargs.get(
|
48 |
-
"example_data_root", Path(__file__).parents[1] / "datasets"
|
49 |
-
)
|
50 |
-
# final step
|
51 |
-
self.init_interface()
|
52 |
-
|
53 |
-
def init_matcher_dropdown(self):
|
54 |
-
algos = []
|
55 |
-
for k, v in self.cfg["matcher_zoo"].items():
|
56 |
-
if v.get("enable", True):
|
57 |
-
algos.append(k)
|
58 |
-
return algos
|
59 |
-
|
60 |
-
def init_interface(self):
|
61 |
-
with gr.Blocks(css=CSS) as self.app:
|
62 |
-
with gr.Tab("Image Matching"):
|
63 |
-
with gr.Row():
|
64 |
-
with gr.Column(scale=1):
|
65 |
-
gr.Image(
|
66 |
-
str(Path(__file__).parent.parent / "assets/logo.webp"),
|
67 |
-
elem_id="logo-img",
|
68 |
-
show_label=False,
|
69 |
-
show_share_button=False,
|
70 |
-
show_download_button=False,
|
71 |
-
)
|
72 |
-
with gr.Column(scale=3):
|
73 |
-
gr.Markdown(DESCRIPTION)
|
74 |
-
with gr.Row(equal_height=False):
|
75 |
-
with gr.Column():
|
76 |
-
with gr.Row():
|
77 |
-
matcher_list = gr.Dropdown(
|
78 |
-
choices=self.init_matcher_dropdown(),
|
79 |
-
value="disk+lightglue",
|
80 |
-
label="Matching Model",
|
81 |
-
interactive=True,
|
82 |
-
)
|
83 |
-
match_image_src = gr.Radio(
|
84 |
-
(
|
85 |
-
["upload", "webcam", "clipboard"]
|
86 |
-
if GRADIO_VERSION > "3"
|
87 |
-
else ["upload", "webcam", "canvas"]
|
88 |
-
),
|
89 |
-
label="Image Source",
|
90 |
-
value="upload",
|
91 |
-
)
|
92 |
-
with gr.Row():
|
93 |
-
input_image0 = gr.Image(
|
94 |
-
label="Image 0",
|
95 |
-
type="numpy",
|
96 |
-
image_mode="RGB",
|
97 |
-
height=300 if GRADIO_VERSION > "3" else None,
|
98 |
-
interactive=True,
|
99 |
-
)
|
100 |
-
input_image1 = gr.Image(
|
101 |
-
label="Image 1",
|
102 |
-
type="numpy",
|
103 |
-
image_mode="RGB",
|
104 |
-
height=300 if GRADIO_VERSION > "3" else None,
|
105 |
-
interactive=True,
|
106 |
-
)
|
107 |
-
|
108 |
-
with gr.Row():
|
109 |
-
button_reset = gr.Button(value="Reset")
|
110 |
-
button_run = gr.Button(value="Run Match", variant="primary")
|
111 |
-
with gr.Row():
|
112 |
-
button_stop = gr.Button(value="Force Stop", variant="stop")
|
113 |
-
|
114 |
-
with gr.Accordion("Advanced Setting", open=False):
|
115 |
-
with gr.Accordion("Image Setting", open=True):
|
116 |
-
with gr.Row():
|
117 |
-
image_force_resize_cb = gr.Checkbox(
|
118 |
-
label="Force Resize",
|
119 |
-
value=False,
|
120 |
-
interactive=True,
|
121 |
-
)
|
122 |
-
image_setting_height = gr.Slider(
|
123 |
-
minimum=48,
|
124 |
-
maximum=2048,
|
125 |
-
step=16,
|
126 |
-
label="Image Height",
|
127 |
-
value=480,
|
128 |
-
visible=False,
|
129 |
-
)
|
130 |
-
image_setting_width = gr.Slider(
|
131 |
-
minimum=64,
|
132 |
-
maximum=2048,
|
133 |
-
step=16,
|
134 |
-
label="Image Width",
|
135 |
-
value=640,
|
136 |
-
visible=False,
|
137 |
-
)
|
138 |
-
with gr.Accordion("Matching Setting", open=True):
|
139 |
-
with gr.Row():
|
140 |
-
match_setting_threshold = gr.Slider(
|
141 |
-
minimum=0.0,
|
142 |
-
maximum=1,
|
143 |
-
step=0.001,
|
144 |
-
label="Match threshold",
|
145 |
-
value=0.1,
|
146 |
-
)
|
147 |
-
match_setting_max_keypoints = gr.Slider(
|
148 |
-
minimum=10,
|
149 |
-
maximum=10000,
|
150 |
-
step=10,
|
151 |
-
label="Max features",
|
152 |
-
value=1000,
|
153 |
-
)
|
154 |
-
# TODO: add line settings
|
155 |
-
with gr.Row():
|
156 |
-
detect_keypoints_threshold = gr.Slider(
|
157 |
-
minimum=0,
|
158 |
-
maximum=1,
|
159 |
-
step=0.001,
|
160 |
-
label="Keypoint threshold",
|
161 |
-
value=0.015,
|
162 |
-
)
|
163 |
-
detect_line_threshold = ( # noqa: F841
|
164 |
-
gr.Slider(
|
165 |
-
minimum=0.1,
|
166 |
-
maximum=1,
|
167 |
-
step=0.01,
|
168 |
-
label="Line threshold",
|
169 |
-
value=0.2,
|
170 |
-
)
|
171 |
-
)
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
)
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
# button
|
332 |
-
|
333 |
-
fn=
|
334 |
-
)
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
str,
|
471 |
-
|
472 |
-
Optional[np.ndarray],
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
self.
|
498 |
-
self.
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
None, #
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
self.cfg["defaults"]["
|
512 |
-
self.cfg["defaults"][
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
),
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
)
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
v["info"].get("
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
)
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
self.
|
603 |
-
|
604 |
-
|
605 |
-
algos
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
return gr.Textbox("
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
label="
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
self.inputs.
|
803 |
-
self.inputs.
|
804 |
-
self.inputs.
|
805 |
-
self.inputs.
|
806 |
-
self.inputs.
|
807 |
-
self.inputs.
|
808 |
-
self.inputs.
|
809 |
-
self.inputs.
|
810 |
-
self.inputs.
|
811 |
-
self.inputs.
|
812 |
-
self.inputs.
|
813 |
-
self.inputs.
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
self.inputs.mapper_refine_extra_params,
|
818 |
-
],
|
819 |
-
outputs=[self.outputs.model_3d, self.outputs.output_image],
|
820 |
-
)
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Any, Dict, Optional, Tuple
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from easydict import EasyDict as edict
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
|
9 |
+
from .sfm import SfmEngine
|
10 |
+
from .utils import (
|
11 |
+
GRADIO_VERSION,
|
12 |
+
gen_examples,
|
13 |
+
generate_warp_images,
|
14 |
+
get_matcher_zoo,
|
15 |
+
load_config,
|
16 |
+
ransac_zoo,
|
17 |
+
run_matching,
|
18 |
+
run_ransac,
|
19 |
+
send_to_match,
|
20 |
+
)
|
21 |
+
|
22 |
+
DESCRIPTION = """
|
23 |
+
# Image Matching WebUI
|
24 |
+
This Space demonstrates [Image Matching WebUI](https://github.com/Vincentqyw/image-matching-webui) by vincent qin. Feel free to play with it, or duplicate to run image matching without a queue!
|
25 |
+
<br/>
|
26 |
+
🔎 For more details about supported local features and matchers, please refer to https://github.com/Vincentqyw/image-matching-webui
|
27 |
+
|
28 |
+
🚀 All algorithms run on CPU for inference, causing slow speeds and high latency. For faster inference, please download the [source code](https://github.com/Vincentqyw/image-matching-webui) for local deployment.
|
29 |
+
|
30 |
+
🐛 Your feedback is valuable to me. Please do not hesitate to report any bugs [here](https://github.com/Vincentqyw/image-matching-webui/issues).
|
31 |
+
"""
|
32 |
+
|
33 |
+
CSS = """
|
34 |
+
#warning {background-color: #FFCCCB}
|
35 |
+
.logs_class textarea {font-size: 12px !important}
|
36 |
+
"""
|
37 |
+
|
38 |
+
|
39 |
+
class ImageMatchingApp:
|
40 |
+
def __init__(self, server_name="0.0.0.0", server_port=7860, **kwargs):
|
41 |
+
self.server_name = server_name
|
42 |
+
self.server_port = server_port
|
43 |
+
self.config_path = kwargs.get("config", Path(__file__).parent / "config.yaml")
|
44 |
+
self.cfg = load_config(self.config_path)
|
45 |
+
self.matcher_zoo = get_matcher_zoo(self.cfg["matcher_zoo"])
|
46 |
+
self.app = None
|
47 |
+
self.example_data_root = kwargs.get(
|
48 |
+
"example_data_root", Path(__file__).parents[1] / "datasets"
|
49 |
+
)
|
50 |
+
# final step
|
51 |
+
self.init_interface()
|
52 |
+
|
53 |
+
def init_matcher_dropdown(self):
|
54 |
+
algos = []
|
55 |
+
for k, v in self.cfg["matcher_zoo"].items():
|
56 |
+
if v.get("enable", True):
|
57 |
+
algos.append(k)
|
58 |
+
return algos
|
59 |
+
|
60 |
+
def init_interface(self):
|
61 |
+
with gr.Blocks(css=CSS) as self.app:
|
62 |
+
with gr.Tab("Image Matching"):
|
63 |
+
with gr.Row():
|
64 |
+
with gr.Column(scale=1):
|
65 |
+
gr.Image(
|
66 |
+
str(Path(__file__).parent.parent / "assets/logo.webp"),
|
67 |
+
elem_id="logo-img",
|
68 |
+
show_label=False,
|
69 |
+
show_share_button=False,
|
70 |
+
show_download_button=False,
|
71 |
+
)
|
72 |
+
with gr.Column(scale=3):
|
73 |
+
gr.Markdown(DESCRIPTION)
|
74 |
+
with gr.Row(equal_height=False):
|
75 |
+
with gr.Column():
|
76 |
+
with gr.Row():
|
77 |
+
matcher_list = gr.Dropdown(
|
78 |
+
choices=self.init_matcher_dropdown(),
|
79 |
+
value="disk+lightglue",
|
80 |
+
label="Matching Model",
|
81 |
+
interactive=True,
|
82 |
+
)
|
83 |
+
match_image_src = gr.Radio(
|
84 |
+
(
|
85 |
+
["upload", "webcam", "clipboard"]
|
86 |
+
if GRADIO_VERSION > "3"
|
87 |
+
else ["upload", "webcam", "canvas"]
|
88 |
+
),
|
89 |
+
label="Image Source",
|
90 |
+
value="upload",
|
91 |
+
)
|
92 |
+
with gr.Row():
|
93 |
+
input_image0 = gr.Image(
|
94 |
+
label="Image 0",
|
95 |
+
type="numpy",
|
96 |
+
image_mode="RGB",
|
97 |
+
height=300 if GRADIO_VERSION > "3" else None,
|
98 |
+
interactive=True,
|
99 |
+
)
|
100 |
+
input_image1 = gr.Image(
|
101 |
+
label="Image 1",
|
102 |
+
type="numpy",
|
103 |
+
image_mode="RGB",
|
104 |
+
height=300 if GRADIO_VERSION > "3" else None,
|
105 |
+
interactive=True,
|
106 |
+
)
|
107 |
+
|
108 |
+
with gr.Row():
|
109 |
+
button_reset = gr.Button(value="Reset")
|
110 |
+
button_run = gr.Button(value="Run Match", variant="primary")
|
111 |
+
with gr.Row():
|
112 |
+
button_stop = gr.Button(value="Force Stop", variant="stop")
|
113 |
+
|
114 |
+
with gr.Accordion("Advanced Setting", open=False):
|
115 |
+
with gr.Accordion("Image Setting", open=True):
|
116 |
+
with gr.Row():
|
117 |
+
image_force_resize_cb = gr.Checkbox(
|
118 |
+
label="Force Resize",
|
119 |
+
value=False,
|
120 |
+
interactive=True,
|
121 |
+
)
|
122 |
+
image_setting_height = gr.Slider(
|
123 |
+
minimum=48,
|
124 |
+
maximum=2048,
|
125 |
+
step=16,
|
126 |
+
label="Image Height",
|
127 |
+
value=480,
|
128 |
+
visible=False,
|
129 |
+
)
|
130 |
+
image_setting_width = gr.Slider(
|
131 |
+
minimum=64,
|
132 |
+
maximum=2048,
|
133 |
+
step=16,
|
134 |
+
label="Image Width",
|
135 |
+
value=640,
|
136 |
+
visible=False,
|
137 |
+
)
|
138 |
+
with gr.Accordion("Matching Setting", open=True):
|
139 |
+
with gr.Row():
|
140 |
+
match_setting_threshold = gr.Slider(
|
141 |
+
minimum=0.0,
|
142 |
+
maximum=1,
|
143 |
+
step=0.001,
|
144 |
+
label="Match threshold",
|
145 |
+
value=0.1,
|
146 |
+
)
|
147 |
+
match_setting_max_keypoints = gr.Slider(
|
148 |
+
minimum=10,
|
149 |
+
maximum=10000,
|
150 |
+
step=10,
|
151 |
+
label="Max features",
|
152 |
+
value=1000,
|
153 |
+
)
|
154 |
+
# TODO: add line settings
|
155 |
+
with gr.Row():
|
156 |
+
detect_keypoints_threshold = gr.Slider(
|
157 |
+
minimum=0,
|
158 |
+
maximum=1,
|
159 |
+
step=0.001,
|
160 |
+
label="Keypoint threshold",
|
161 |
+
value=0.015,
|
162 |
+
)
|
163 |
+
detect_line_threshold = ( # noqa: F841
|
164 |
+
gr.Slider(
|
165 |
+
minimum=0.1,
|
166 |
+
maximum=1,
|
167 |
+
step=0.01,
|
168 |
+
label="Line threshold",
|
169 |
+
value=0.2,
|
170 |
+
)
|
171 |
+
)
|
172 |
+
|
173 |
+
with gr.Accordion("RANSAC Setting", open=True):
|
174 |
+
with gr.Row(equal_height=False):
|
175 |
+
ransac_method = gr.Dropdown(
|
176 |
+
choices=ransac_zoo.keys(),
|
177 |
+
value=self.cfg["defaults"]["ransac_method"],
|
178 |
+
label="RANSAC Method",
|
179 |
+
interactive=True,
|
180 |
+
)
|
181 |
+
ransac_reproj_threshold = gr.Slider(
|
182 |
+
minimum=0.0,
|
183 |
+
maximum=12,
|
184 |
+
step=0.01,
|
185 |
+
label="Ransac Reproj threshold",
|
186 |
+
value=8.0,
|
187 |
+
)
|
188 |
+
ransac_confidence = gr.Slider(
|
189 |
+
minimum=0.0,
|
190 |
+
maximum=1,
|
191 |
+
step=0.00001,
|
192 |
+
label="Ransac Confidence",
|
193 |
+
value=self.cfg["defaults"]["ransac_confidence"],
|
194 |
+
)
|
195 |
+
ransac_max_iter = gr.Slider(
|
196 |
+
minimum=0.0,
|
197 |
+
maximum=100000,
|
198 |
+
step=100,
|
199 |
+
label="Ransac Iterations",
|
200 |
+
value=self.cfg["defaults"]["ransac_max_iter"],
|
201 |
+
)
|
202 |
+
button_ransac = gr.Button(
|
203 |
+
value="Rerun RANSAC", variant="primary"
|
204 |
+
)
|
205 |
+
with gr.Accordion("Geometry Setting", open=False):
|
206 |
+
with gr.Row(equal_height=False):
|
207 |
+
choice_geometry_type = gr.Radio(
|
208 |
+
["Fundamental", "Homography"],
|
209 |
+
label="Reconstruct Geometry",
|
210 |
+
value=self.cfg["defaults"]["setting_geometry"],
|
211 |
+
)
|
212 |
+
# image resize
|
213 |
+
image_force_resize_cb.select(
|
214 |
+
fn=self._on_select_force_resize,
|
215 |
+
inputs=image_force_resize_cb,
|
216 |
+
outputs=[image_setting_width, image_setting_height],
|
217 |
+
)
|
218 |
+
# collect inputs
|
219 |
+
state_cache = gr.State({})
|
220 |
+
inputs = [
|
221 |
+
input_image0,
|
222 |
+
input_image1,
|
223 |
+
match_setting_threshold,
|
224 |
+
match_setting_max_keypoints,
|
225 |
+
detect_keypoints_threshold,
|
226 |
+
matcher_list,
|
227 |
+
ransac_method,
|
228 |
+
ransac_reproj_threshold,
|
229 |
+
ransac_confidence,
|
230 |
+
ransac_max_iter,
|
231 |
+
choice_geometry_type,
|
232 |
+
gr.State(self.matcher_zoo),
|
233 |
+
image_force_resize_cb,
|
234 |
+
image_setting_width,
|
235 |
+
image_setting_height,
|
236 |
+
]
|
237 |
+
|
238 |
+
# Add some examples
|
239 |
+
with gr.Row():
|
240 |
+
# Example inputs
|
241 |
+
with gr.Accordion("Open for More: Examples", open=True):
|
242 |
+
gr.Examples(
|
243 |
+
examples=gen_examples(self.example_data_root),
|
244 |
+
inputs=inputs,
|
245 |
+
outputs=[],
|
246 |
+
fn=run_matching,
|
247 |
+
cache_examples=False,
|
248 |
+
label=(
|
249 |
+
"Examples (click one of the images below to Run"
|
250 |
+
" Match). Thx: WxBS"
|
251 |
+
),
|
252 |
+
)
|
253 |
+
with gr.Accordion("Supported Algorithms", open=False):
|
254 |
+
# add a table of supported algorithms
|
255 |
+
self.display_supported_algorithms()
|
256 |
+
|
257 |
+
with gr.Column():
|
258 |
+
with gr.Accordion("Open for More: Keypoints", open=True):
|
259 |
+
output_keypoints = gr.Image(label="Keypoints", type="numpy")
|
260 |
+
with gr.Accordion(
|
261 |
+
(
|
262 |
+
"Open for More: Raw Matches"
|
263 |
+
" (Green for good matches, Red for bad)"
|
264 |
+
),
|
265 |
+
open=False,
|
266 |
+
):
|
267 |
+
output_matches_raw = gr.Image(
|
268 |
+
label="Raw Matches",
|
269 |
+
type="numpy",
|
270 |
+
)
|
271 |
+
with gr.Accordion(
|
272 |
+
(
|
273 |
+
"Open for More: Ransac Matches"
|
274 |
+
" (Green for good matches, Red for bad)"
|
275 |
+
),
|
276 |
+
open=True,
|
277 |
+
):
|
278 |
+
output_matches_ransac = gr.Image(
|
279 |
+
label="Ransac Matches", type="numpy"
|
280 |
+
)
|
281 |
+
with gr.Accordion(
|
282 |
+
"Open for More: Matches Statistics", open=False
|
283 |
+
):
|
284 |
+
output_pred = gr.File(label="Outputs", elem_id="download")
|
285 |
+
matches_result_info = gr.JSON(label="Matches Statistics")
|
286 |
+
matcher_info = gr.JSON(label="Match info")
|
287 |
+
|
288 |
+
with gr.Accordion("Open for More: Warped Image", open=True):
|
289 |
+
output_wrapped = gr.Image(
|
290 |
+
label="Wrapped Pair", type="numpy"
|
291 |
+
)
|
292 |
+
# send to input
|
293 |
+
button_rerun = gr.Button(
|
294 |
+
value="Send to Input Match Pair",
|
295 |
+
variant="primary",
|
296 |
+
)
|
297 |
+
with gr.Accordion(
|
298 |
+
"Open for More: Geometry info", open=False
|
299 |
+
):
|
300 |
+
geometry_result = gr.JSON(
|
301 |
+
label="Reconstructed Geometry"
|
302 |
+
)
|
303 |
+
|
304 |
+
# callbacks
|
305 |
+
match_image_src.change(
|
306 |
+
fn=self.ui_change_imagebox,
|
307 |
+
inputs=match_image_src,
|
308 |
+
outputs=input_image0,
|
309 |
+
)
|
310 |
+
match_image_src.change(
|
311 |
+
fn=self.ui_change_imagebox,
|
312 |
+
inputs=match_image_src,
|
313 |
+
outputs=input_image1,
|
314 |
+
)
|
315 |
+
# collect outputs
|
316 |
+
outputs = [
|
317 |
+
output_keypoints,
|
318 |
+
output_matches_raw,
|
319 |
+
output_matches_ransac,
|
320 |
+
matches_result_info,
|
321 |
+
matcher_info,
|
322 |
+
geometry_result,
|
323 |
+
output_wrapped,
|
324 |
+
state_cache,
|
325 |
+
output_pred,
|
326 |
+
]
|
327 |
+
# button callbacks
|
328 |
+
click_event = button_run.click(
|
329 |
+
fn=run_matching, inputs=inputs, outputs=outputs
|
330 |
+
)
|
331 |
+
# stop button
|
332 |
+
button_stop.click(
|
333 |
+
fn=None, inputs=None, outputs=None, cancels=[click_event]
|
334 |
+
)
|
335 |
+
|
336 |
+
# Reset images
|
337 |
+
reset_outputs = [
|
338 |
+
input_image0,
|
339 |
+
input_image1,
|
340 |
+
match_setting_threshold,
|
341 |
+
match_setting_max_keypoints,
|
342 |
+
detect_keypoints_threshold,
|
343 |
+
matcher_list,
|
344 |
+
input_image0,
|
345 |
+
input_image1,
|
346 |
+
match_image_src,
|
347 |
+
output_keypoints,
|
348 |
+
output_matches_raw,
|
349 |
+
output_matches_ransac,
|
350 |
+
matches_result_info,
|
351 |
+
matcher_info,
|
352 |
+
output_wrapped,
|
353 |
+
geometry_result,
|
354 |
+
ransac_method,
|
355 |
+
ransac_reproj_threshold,
|
356 |
+
ransac_confidence,
|
357 |
+
ransac_max_iter,
|
358 |
+
choice_geometry_type,
|
359 |
+
output_pred,
|
360 |
+
image_force_resize_cb,
|
361 |
+
]
|
362 |
+
button_reset.click(
|
363 |
+
fn=self.ui_reset_state,
|
364 |
+
inputs=None,
|
365 |
+
outputs=reset_outputs,
|
366 |
+
)
|
367 |
+
|
368 |
+
# run ransac button action
|
369 |
+
button_ransac.click(
|
370 |
+
fn=run_ransac,
|
371 |
+
inputs=[
|
372 |
+
state_cache,
|
373 |
+
choice_geometry_type,
|
374 |
+
ransac_method,
|
375 |
+
ransac_reproj_threshold,
|
376 |
+
ransac_confidence,
|
377 |
+
ransac_max_iter,
|
378 |
+
],
|
379 |
+
outputs=[
|
380 |
+
output_matches_ransac,
|
381 |
+
matches_result_info,
|
382 |
+
output_wrapped,
|
383 |
+
output_pred,
|
384 |
+
],
|
385 |
+
)
|
386 |
+
|
387 |
+
# send warped image to match
|
388 |
+
button_rerun.click(
|
389 |
+
fn=send_to_match,
|
390 |
+
inputs=[state_cache],
|
391 |
+
outputs=[input_image0, input_image1],
|
392 |
+
)
|
393 |
+
|
394 |
+
# estimate geo
|
395 |
+
choice_geometry_type.change(
|
396 |
+
fn=generate_warp_images,
|
397 |
+
inputs=[
|
398 |
+
input_image0,
|
399 |
+
input_image1,
|
400 |
+
geometry_result,
|
401 |
+
choice_geometry_type,
|
402 |
+
],
|
403 |
+
outputs=[output_wrapped, geometry_result],
|
404 |
+
)
|
405 |
+
with gr.Tab("Structure from Motion(under-dev)"):
|
406 |
+
sfm_ui = AppSfmUI( # noqa: F841
|
407 |
+
{
|
408 |
+
**self.cfg,
|
409 |
+
"matcher_zoo": self.matcher_zoo,
|
410 |
+
"outputs": "experiments/sfm",
|
411 |
+
}
|
412 |
+
)
|
413 |
+
sfm_ui.call_empty()
|
414 |
+
|
415 |
+
def run(self):
|
416 |
+
self.app.queue().launch(
|
417 |
+
server_name=self.server_name,
|
418 |
+
server_port=self.server_port,
|
419 |
+
share=False,
|
420 |
+
allowed_paths=[
|
421 |
+
str(Path(__file__).parents[0]),
|
422 |
+
str(Path(__file__).parents[1]),
|
423 |
+
],
|
424 |
+
)
|
425 |
+
|
426 |
+
def ui_change_imagebox(self, choice):
|
427 |
+
"""
|
428 |
+
Updates the image box with the given choice.
|
429 |
+
|
430 |
+
Args:
|
431 |
+
choice (list): The list of image sources to be displayed in the image box.
|
432 |
+
|
433 |
+
Returns:
|
434 |
+
dict: A dictionary containing the updated value, sources, and type for the image box.
|
435 |
+
"""
|
436 |
+
ret_dict = {
|
437 |
+
"value": None, # The updated value of the image box
|
438 |
+
"__type__": "update", # The type of update for the image box
|
439 |
+
}
|
440 |
+
if GRADIO_VERSION > "3":
|
441 |
+
return {
|
442 |
+
**ret_dict,
|
443 |
+
"sources": choice, # The list of image sources to be displayed
|
444 |
+
}
|
445 |
+
else:
|
446 |
+
return {
|
447 |
+
**ret_dict,
|
448 |
+
"source": choice, # The list of image sources to be displayed
|
449 |
+
}
|
450 |
+
|
451 |
+
def _on_select_force_resize(self, visible: bool = False):
|
452 |
+
return gr.update(visible=visible), gr.update(visible=visible)
|
453 |
+
|
454 |
+
def ui_reset_state(
|
455 |
+
self,
|
456 |
+
*args: Any,
|
457 |
+
) -> Tuple[
|
458 |
+
Optional[np.ndarray],
|
459 |
+
Optional[np.ndarray],
|
460 |
+
float,
|
461 |
+
int,
|
462 |
+
float,
|
463 |
+
str,
|
464 |
+
Dict[str, Any],
|
465 |
+
Dict[str, Any],
|
466 |
+
str,
|
467 |
+
Optional[np.ndarray],
|
468 |
+
Optional[np.ndarray],
|
469 |
+
Optional[np.ndarray],
|
470 |
+
Dict[str, Any],
|
471 |
+
Dict[str, Any],
|
472 |
+
Optional[np.ndarray],
|
473 |
+
Dict[str, Any],
|
474 |
+
str,
|
475 |
+
int,
|
476 |
+
float,
|
477 |
+
int,
|
478 |
+
bool,
|
479 |
+
]:
|
480 |
+
"""
|
481 |
+
Reset the state of the UI.
|
482 |
+
|
483 |
+
Returns:
|
484 |
+
tuple: A tuple containing the initial values for the UI state.
|
485 |
+
"""
|
486 |
+
key: str = list(self.matcher_zoo.keys())[
|
487 |
+
0
|
488 |
+
] # Get the first key from matcher_zoo
|
489 |
+
# flush_logs()
|
490 |
+
return (
|
491 |
+
None, # image0: Optional[np.ndarray]
|
492 |
+
None, # image1: Optional[np.ndarray]
|
493 |
+
self.cfg["defaults"]["match_threshold"], # matching_threshold: float
|
494 |
+
self.cfg["defaults"]["max_keypoints"], # max_keypoints: int
|
495 |
+
self.cfg["defaults"]["keypoint_threshold"], # keypoint_threshold: float
|
496 |
+
key, # matcher: str
|
497 |
+
self.ui_change_imagebox("upload"), # input image0: Dict[str, Any]
|
498 |
+
self.ui_change_imagebox("upload"), # input image1: Dict[str, Any]
|
499 |
+
"upload", # match_image_src: str
|
500 |
+
None, # keypoints: Optional[np.ndarray]
|
501 |
+
None, # raw matches: Optional[np.ndarray]
|
502 |
+
None, # ransac matches: Optional[np.ndarray]
|
503 |
+
{}, # matches result info: Dict[str, Any]
|
504 |
+
{}, # matcher config: Dict[str, Any]
|
505 |
+
None, # warped image: Optional[np.ndarray]
|
506 |
+
{}, # geometry result: Dict[str, Any]
|
507 |
+
self.cfg["defaults"]["ransac_method"], # ransac_method: str
|
508 |
+
self.cfg["defaults"][
|
509 |
+
"ransac_reproj_threshold"
|
510 |
+
], # ransac_reproj_threshold: float
|
511 |
+
self.cfg["defaults"]["ransac_confidence"], # ransac_confidence: float
|
512 |
+
self.cfg["defaults"]["ransac_max_iter"], # ransac_max_iter: int
|
513 |
+
self.cfg["defaults"]["setting_geometry"], # geometry: str
|
514 |
+
None, # predictions
|
515 |
+
False,
|
516 |
+
)
|
517 |
+
|
518 |
+
def display_supported_algorithms(self, style="tab"):
|
519 |
+
def get_link(link, tag="Link"):
|
520 |
+
return "[{}]({})".format(tag, link) if link is not None else "None"
|
521 |
+
|
522 |
+
data = []
|
523 |
+
cfg = self.cfg["matcher_zoo"]
|
524 |
+
if style == "md":
|
525 |
+
markdown_table = "| Algo. | Conference | Code | Project | Paper |\n"
|
526 |
+
markdown_table += "| ----- | ---------- | ---- | ------- | ----- |\n"
|
527 |
+
|
528 |
+
for _, v in cfg.items():
|
529 |
+
if not v["info"].get("display", True):
|
530 |
+
continue
|
531 |
+
github_link = get_link(v["info"].get("github", ""))
|
532 |
+
project_link = get_link(v["info"].get("project", ""))
|
533 |
+
paper_link = get_link(
|
534 |
+
v["info"]["paper"],
|
535 |
+
(
|
536 |
+
Path(v["info"]["paper"]).name[-10:]
|
537 |
+
if v["info"]["paper"] is not None
|
538 |
+
else "Link"
|
539 |
+
),
|
540 |
+
)
|
541 |
+
|
542 |
+
markdown_table += "{}|{}|{}|{}|{}\n".format(
|
543 |
+
v["info"].get("name", ""),
|
544 |
+
v["info"].get("source", ""),
|
545 |
+
github_link,
|
546 |
+
project_link,
|
547 |
+
paper_link,
|
548 |
+
)
|
549 |
+
return gr.Markdown(markdown_table)
|
550 |
+
elif style == "tab":
|
551 |
+
for k, v in cfg.items():
|
552 |
+
if not v["info"].get("display", True):
|
553 |
+
continue
|
554 |
+
data.append(
|
555 |
+
[
|
556 |
+
v["info"].get("name", ""),
|
557 |
+
v["info"].get("source", ""),
|
558 |
+
v["info"].get("github", ""),
|
559 |
+
v["info"].get("paper", ""),
|
560 |
+
v["info"].get("project", ""),
|
561 |
+
]
|
562 |
+
)
|
563 |
+
tab = gr.Dataframe(
|
564 |
+
headers=["Algo.", "Conference", "Code", "Paper", "Project"],
|
565 |
+
datatype=["str", "str", "str", "str", "str"],
|
566 |
+
col_count=(5, "fixed"),
|
567 |
+
value=data,
|
568 |
+
# wrap=True,
|
569 |
+
# min_width = 1000,
|
570 |
+
# height=1000,
|
571 |
+
)
|
572 |
+
return tab
|
573 |
+
|
574 |
+
|
575 |
+
class AppBaseUI:
|
576 |
+
def __init__(self, cfg: Dict[str, Any] = {}):
|
577 |
+
self.cfg = OmegaConf.create(cfg)
|
578 |
+
self.inputs = edict({})
|
579 |
+
self.outputs = edict({})
|
580 |
+
self.ui = edict({})
|
581 |
+
|
582 |
+
def _init_ui(self):
|
583 |
+
NotImplemented
|
584 |
+
|
585 |
+
def call(self, **kwargs):
|
586 |
+
NotImplemented
|
587 |
+
|
588 |
+
def info(self):
|
589 |
+
gr.Info("SFM is under construction.")
|
590 |
+
|
591 |
+
|
592 |
+
class AppSfmUI(AppBaseUI):
|
593 |
+
def __init__(self, cfg: Dict[str, Any] = None):
|
594 |
+
super().__init__(cfg)
|
595 |
+
assert "matcher_zoo" in self.cfg
|
596 |
+
self.matcher_zoo = self.cfg["matcher_zoo"]
|
597 |
+
self.sfm_engine = SfmEngine(cfg)
|
598 |
+
self._init_ui()
|
599 |
+
|
600 |
+
def init_retrieval_dropdown(self):
|
601 |
+
algos = []
|
602 |
+
for k, v in self.cfg["retrieval_zoo"].items():
|
603 |
+
if v.get("enable", True):
|
604 |
+
algos.append(k)
|
605 |
+
return algos
|
606 |
+
|
607 |
+
def _update_options(self, option):
|
608 |
+
if option == "sparse":
|
609 |
+
return gr.Textbox("sparse", visible=True)
|
610 |
+
elif option == "dense":
|
611 |
+
return gr.Textbox("dense", visible=True)
|
612 |
+
else:
|
613 |
+
return gr.Textbox("not set", visible=True)
|
614 |
+
|
615 |
+
def _on_select_custom_params(self, value: bool = False):
|
616 |
+
return gr.update(visible=value)
|
617 |
+
|
618 |
+
def _init_ui(self):
|
619 |
+
with gr.Row():
|
620 |
+
# data settting and camera settings
|
621 |
+
with gr.Column():
|
622 |
+
self.inputs.input_images = gr.File(
|
623 |
+
label="SfM",
|
624 |
+
interactive=True,
|
625 |
+
file_count="multiple",
|
626 |
+
min_width=300,
|
627 |
+
)
|
628 |
+
# camera setting
|
629 |
+
with gr.Accordion("Camera Settings", open=True):
|
630 |
+
with gr.Column():
|
631 |
+
with gr.Row():
|
632 |
+
with gr.Column():
|
633 |
+
self.inputs.camera_model = gr.Dropdown(
|
634 |
+
choices=[
|
635 |
+
"PINHOLE",
|
636 |
+
"SIMPLE_RADIAL",
|
637 |
+
"OPENCV",
|
638 |
+
],
|
639 |
+
value="PINHOLE",
|
640 |
+
label="Camera Model",
|
641 |
+
interactive=True,
|
642 |
+
)
|
643 |
+
with gr.Column():
|
644 |
+
gr.Checkbox(
|
645 |
+
label="Shared Params",
|
646 |
+
value=True,
|
647 |
+
interactive=True,
|
648 |
+
)
|
649 |
+
camera_custom_params_cb = gr.Checkbox(
|
650 |
+
label="Custom Params",
|
651 |
+
value=False,
|
652 |
+
interactive=True,
|
653 |
+
)
|
654 |
+
with gr.Row():
|
655 |
+
self.inputs.camera_params = gr.Textbox(
|
656 |
+
label="Camera Params",
|
657 |
+
value="0,0,0,0",
|
658 |
+
interactive=False,
|
659 |
+
visible=False,
|
660 |
+
)
|
661 |
+
camera_custom_params_cb.select(
|
662 |
+
fn=self._on_select_custom_params,
|
663 |
+
inputs=camera_custom_params_cb,
|
664 |
+
outputs=self.inputs.camera_params,
|
665 |
+
)
|
666 |
+
|
667 |
+
with gr.Accordion("Matching Settings", open=True):
|
668 |
+
# feature extraction and matching setting
|
669 |
+
with gr.Row():
|
670 |
+
# matcher setting
|
671 |
+
self.inputs.matcher_key = gr.Dropdown(
|
672 |
+
choices=self.matcher_zoo.keys(),
|
673 |
+
value="disk+lightglue",
|
674 |
+
label="Matching Model",
|
675 |
+
interactive=True,
|
676 |
+
)
|
677 |
+
with gr.Row():
|
678 |
+
with gr.Accordion("Advanced Settings", open=False):
|
679 |
+
with gr.Column():
|
680 |
+
with gr.Row():
|
681 |
+
# matching setting
|
682 |
+
self.inputs.max_keypoints = gr.Slider(
|
683 |
+
label="Max Keypoints",
|
684 |
+
minimum=100,
|
685 |
+
maximum=10000,
|
686 |
+
value=1000,
|
687 |
+
interactive=True,
|
688 |
+
)
|
689 |
+
self.inputs.keypoint_threshold = gr.Slider(
|
690 |
+
label="Keypoint Threshold",
|
691 |
+
minimum=0,
|
692 |
+
maximum=1,
|
693 |
+
value=0.01,
|
694 |
+
)
|
695 |
+
with gr.Row():
|
696 |
+
self.inputs.match_threshold = gr.Slider(
|
697 |
+
label="Match Threshold",
|
698 |
+
minimum=0.01,
|
699 |
+
maximum=12.0,
|
700 |
+
value=0.2,
|
701 |
+
)
|
702 |
+
self.inputs.ransac_threshold = gr.Slider(
|
703 |
+
label="Ransac Threshold",
|
704 |
+
minimum=0.01,
|
705 |
+
maximum=12.0,
|
706 |
+
value=4.0,
|
707 |
+
step=0.01,
|
708 |
+
interactive=True,
|
709 |
+
)
|
710 |
+
|
711 |
+
with gr.Row():
|
712 |
+
self.inputs.ransac_confidence = gr.Slider(
|
713 |
+
label="Ransac Confidence",
|
714 |
+
minimum=0.01,
|
715 |
+
maximum=1.0,
|
716 |
+
value=0.9999,
|
717 |
+
step=0.0001,
|
718 |
+
interactive=True,
|
719 |
+
)
|
720 |
+
self.inputs.ransac_max_iter = gr.Slider(
|
721 |
+
label="Ransac Max Iter",
|
722 |
+
minimum=1,
|
723 |
+
maximum=100,
|
724 |
+
value=100,
|
725 |
+
step=1,
|
726 |
+
interactive=True,
|
727 |
+
)
|
728 |
+
with gr.Accordion("Scene Graph Settings", open=True):
|
729 |
+
# mapping setting
|
730 |
+
self.inputs.scene_graph = gr.Dropdown(
|
731 |
+
choices=["all", "swin", "oneref"],
|
732 |
+
value="all",
|
733 |
+
label="Scene Graph",
|
734 |
+
interactive=True,
|
735 |
+
)
|
736 |
+
|
737 |
+
# global feature setting
|
738 |
+
self.inputs.global_feature = gr.Dropdown(
|
739 |
+
choices=self.init_retrieval_dropdown(),
|
740 |
+
value="netvlad",
|
741 |
+
label="Global features",
|
742 |
+
interactive=True,
|
743 |
+
)
|
744 |
+
self.inputs.top_k = gr.Slider(
|
745 |
+
label="Number of Images per Image to Match",
|
746 |
+
minimum=1,
|
747 |
+
maximum=100,
|
748 |
+
value=10,
|
749 |
+
step=1,
|
750 |
+
)
|
751 |
+
# button_match = gr.Button("Run Matching", variant="primary")
|
752 |
+
|
753 |
+
# mapping setting
|
754 |
+
with gr.Column():
|
755 |
+
with gr.Accordion("Mapping Settings", open=True):
|
756 |
+
with gr.Row():
|
757 |
+
with gr.Accordion("Buddle Settings", open=True):
|
758 |
+
with gr.Row():
|
759 |
+
self.inputs.mapper_refine_focal_length = gr.Checkbox(
|
760 |
+
label="Refine Focal Length",
|
761 |
+
value=False,
|
762 |
+
interactive=True,
|
763 |
+
)
|
764 |
+
self.inputs.mapper_refine_principle_points = (
|
765 |
+
gr.Checkbox(
|
766 |
+
label="Refine Principle Points",
|
767 |
+
value=False,
|
768 |
+
interactive=True,
|
769 |
+
)
|
770 |
+
)
|
771 |
+
self.inputs.mapper_refine_extra_params = gr.Checkbox(
|
772 |
+
label="Refine Extra Params",
|
773 |
+
value=False,
|
774 |
+
interactive=True,
|
775 |
+
)
|
776 |
+
with gr.Accordion("Retriangluation Settings", open=True):
|
777 |
+
gr.Textbox(
|
778 |
+
label="Retriangluation Details",
|
779 |
+
)
|
780 |
+
self.ui.button_sfm = gr.Button("Run SFM", variant="primary")
|
781 |
+
self.outputs.model_3d = gr.Model3D(
|
782 |
+
interactive=True,
|
783 |
+
)
|
784 |
+
self.outputs.output_image = gr.Image(
|
785 |
+
label="SFM Visualize",
|
786 |
+
type="numpy",
|
787 |
+
image_mode="RGB",
|
788 |
+
interactive=False,
|
789 |
+
)
|
790 |
+
|
791 |
+
def call_empty(self):
|
792 |
+
self.ui.button_sfm.click(fn=self.info, inputs=[], outputs=[])
|
793 |
+
|
794 |
+
def call(self):
|
795 |
+
self.ui.button_sfm.click(
|
796 |
+
fn=self.sfm_engine.call,
|
797 |
+
inputs=[
|
798 |
+
self.inputs.matcher_key,
|
799 |
+
self.inputs.input_images, # images
|
800 |
+
self.inputs.camera_model,
|
801 |
+
self.inputs.camera_params,
|
802 |
+
self.inputs.max_keypoints,
|
803 |
+
self.inputs.keypoint_threshold,
|
804 |
+
self.inputs.match_threshold,
|
805 |
+
self.inputs.ransac_threshold,
|
806 |
+
self.inputs.ransac_confidence,
|
807 |
+
self.inputs.ransac_max_iter,
|
808 |
+
self.inputs.scene_graph,
|
809 |
+
self.inputs.global_feature,
|
810 |
+
self.inputs.top_k,
|
811 |
+
self.inputs.mapper_refine_focal_length,
|
812 |
+
self.inputs.mapper_refine_principle_points,
|
813 |
+
self.inputs.mapper_refine_extra_params,
|
814 |
+
],
|
815 |
+
outputs=[self.outputs.model_3d, self.outputs.output_image],
|
816 |
+
)
|
|
|
|
|
|
|
|
imcui/ui/modelcache.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
import threading
|
5 |
+
from collections import OrderedDict
|
6 |
+
import torch
|
7 |
+
from ..hloc import logger
|
8 |
+
|
9 |
+
|
10 |
+
class ARCSizeAwareModelCache:
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
max_gpu_mem: float = 8e9,
|
14 |
+
max_cpu_mem: float = 12e9,
|
15 |
+
device_priority: list = ["cuda", "cpu"],
|
16 |
+
auto_empty_cache: bool = True,
|
17 |
+
):
|
18 |
+
"""
|
19 |
+
Initialize the model cache.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
max_gpu_mem: Maximum GPU memory allowed in bytes.
|
23 |
+
max_cpu_mem: Maximum CPU memory allowed in bytes.
|
24 |
+
device_priority: List of devices to prioritize when evicting models.
|
25 |
+
auto_empty_cache: Whether to call torch.cuda.empty_cache() when out of memory.
|
26 |
+
"""
|
27 |
+
|
28 |
+
self.t1 = OrderedDict()
|
29 |
+
self.t2 = OrderedDict()
|
30 |
+
self.b1 = OrderedDict()
|
31 |
+
self.b2 = OrderedDict()
|
32 |
+
|
33 |
+
self.max_gpu = max_gpu_mem
|
34 |
+
self.max_cpu = max_cpu_mem
|
35 |
+
self.current_gpu = 0
|
36 |
+
self.current_cpu = 0
|
37 |
+
|
38 |
+
self.p = 0
|
39 |
+
self.adaptive_factor = 0.5
|
40 |
+
|
41 |
+
self.device_priority = device_priority
|
42 |
+
self.lock = threading.Lock()
|
43 |
+
self.auto_empty_cache = auto_empty_cache
|
44 |
+
|
45 |
+
logger.info("ARCSizeAwareModelCache initialized.")
|
46 |
+
|
47 |
+
def _release_model(self, model_entry):
|
48 |
+
"""
|
49 |
+
Release a model from memory.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
model_entry: A dictionary containing the model, device and other information.
|
53 |
+
|
54 |
+
Notes:
|
55 |
+
If the device is CUDA and auto_empty_cache is True, torch.cuda.empty_cache() is called after releasing the model.
|
56 |
+
"""
|
57 |
+
model = model_entry["model"]
|
58 |
+
device = model_entry["device"]
|
59 |
+
|
60 |
+
del model
|
61 |
+
if device == "cuda":
|
62 |
+
torch.cuda.synchronize()
|
63 |
+
if self.auto_empty_cache:
|
64 |
+
torch.cuda.empty_cache()
|
65 |
+
|
66 |
+
def generate_key(self, model_key, model_conf: dict) -> str:
|
67 |
+
loader_identifier = f"{model_key}"
|
68 |
+
unique_str = f"{loader_identifier}-{json.dumps(model_conf, sort_keys=True)}"
|
69 |
+
return hashlib.sha256(unique_str.encode()).hexdigest()
|
70 |
+
|
71 |
+
def _get_device(self, model_size: int) -> str:
|
72 |
+
for device in self.device_priority:
|
73 |
+
if device == "cuda" and torch.cuda.is_available():
|
74 |
+
if self.current_gpu + model_size <= self.max_gpu:
|
75 |
+
return "cuda"
|
76 |
+
elif device == "cpu":
|
77 |
+
if self.current_cpu + model_size <= self.max_cpu:
|
78 |
+
return "cpu"
|
79 |
+
return "cpu"
|
80 |
+
|
81 |
+
def _calculate_model_size(self, model):
|
82 |
+
return sum(p.numel() * p.element_size() for p in model.parameters()) + sum(
|
83 |
+
b.numel() * b.element_size() for b in model.buffers()
|
84 |
+
)
|
85 |
+
|
86 |
+
def _update_access(self, key: str, size: int, device: str):
|
87 |
+
if key in self.b1:
|
88 |
+
self.p = min(
|
89 |
+
self.p + max(1, len(self.b2) // len(self.b1)),
|
90 |
+
len(self.t1) + len(self.t2),
|
91 |
+
)
|
92 |
+
self.b1.pop(key)
|
93 |
+
self._replace(False)
|
94 |
+
elif key in self.b2:
|
95 |
+
self.p = max(self.p - max(1, len(self.b1) // len(self.b2)), 0)
|
96 |
+
self.b2.pop(key)
|
97 |
+
self._replace(True)
|
98 |
+
|
99 |
+
if key in self.t1:
|
100 |
+
self.t1.pop(key)
|
101 |
+
self.t2[key] = {
|
102 |
+
"size": size,
|
103 |
+
"device": device,
|
104 |
+
"access_count": 1,
|
105 |
+
"last_accessed": time.time(),
|
106 |
+
}
|
107 |
+
|
108 |
+
def _replace(self, in_t2: bool):
|
109 |
+
if len(self.t1) > 0 and (
|
110 |
+
(len(self.t1) > self.p) or (in_t2 and len(self.t1) == self.p)
|
111 |
+
):
|
112 |
+
k, v = self.t1.popitem(last=False)
|
113 |
+
self.b1[k] = v
|
114 |
+
else:
|
115 |
+
k, v = self.t2.popitem(last=False)
|
116 |
+
self.b2[k] = v
|
117 |
+
|
118 |
+
def _calculate_weight(self, entry) -> float:
|
119 |
+
return entry["access_count"] / entry["size"]
|
120 |
+
|
121 |
+
def _evict_models(self, required_size: int, target_device: str) -> bool:
|
122 |
+
candidates = []
|
123 |
+
for k, v in list(self.t1.items()) + list(self.t2.items()):
|
124 |
+
if v["device"] == target_device:
|
125 |
+
candidates.append((k, v))
|
126 |
+
|
127 |
+
candidates.sort(key=lambda x: self._calculate_weight(x[1]))
|
128 |
+
|
129 |
+
freed = 0
|
130 |
+
for k, v in candidates:
|
131 |
+
self._release_model(v)
|
132 |
+
freed += v["size"]
|
133 |
+
if v in self.t1:
|
134 |
+
self.t1.pop(k)
|
135 |
+
if v in self.t2:
|
136 |
+
self.t2.pop(k)
|
137 |
+
|
138 |
+
if v["device"] == "cuda":
|
139 |
+
self.current_gpu -= v["size"]
|
140 |
+
else:
|
141 |
+
self.current_cpu -= v["size"]
|
142 |
+
|
143 |
+
if freed >= required_size:
|
144 |
+
return True
|
145 |
+
|
146 |
+
if target_device == "cuda":
|
147 |
+
return self._cross_device_evict(required_size, "cuda")
|
148 |
+
return False
|
149 |
+
|
150 |
+
def _cross_device_evict(self, required_size: int, target_device: str) -> bool:
|
151 |
+
all_entries = []
|
152 |
+
for k, v in list(self.t1.items()) + list(self.t2.items()):
|
153 |
+
all_entries.append((k, v))
|
154 |
+
|
155 |
+
all_entries.sort(
|
156 |
+
key=lambda x: self._calculate_weight(x[1])
|
157 |
+
+ (0.5 if x[1]["device"] == target_device else 0)
|
158 |
+
)
|
159 |
+
|
160 |
+
freed = 0
|
161 |
+
for k, v in all_entries:
|
162 |
+
freed += v["size"]
|
163 |
+
if v in self.t1:
|
164 |
+
self.t1.pop(k)
|
165 |
+
if v in self.t2:
|
166 |
+
self.t2.pop(k)
|
167 |
+
|
168 |
+
if v["device"] == "cuda":
|
169 |
+
self.current_gpu -= v["size"]
|
170 |
+
else:
|
171 |
+
self.current_cpu -= v["size"]
|
172 |
+
|
173 |
+
if freed >= required_size:
|
174 |
+
return True
|
175 |
+
return False
|
176 |
+
|
177 |
+
def load_model(self, model_key, model_loader_func, model_conf: dict):
|
178 |
+
key = self.generate_key(model_key, model_conf)
|
179 |
+
|
180 |
+
with self.lock:
|
181 |
+
if key in self.t1 or key in self.t2:
|
182 |
+
entry = self.t1.pop(key, None) or self.t2.pop(key)
|
183 |
+
entry["access_count"] += 1
|
184 |
+
self.t2[key] = entry
|
185 |
+
return entry["model"]
|
186 |
+
|
187 |
+
raw_model = model_loader_func(model_conf)
|
188 |
+
model_size = self._calculate_model_size(raw_model)
|
189 |
+
device = self._get_device(model_size)
|
190 |
+
|
191 |
+
if device == "cuda" and self.auto_empty_cache:
|
192 |
+
torch.cuda.empty_cache()
|
193 |
+
torch.cuda.synchronize()
|
194 |
+
|
195 |
+
while True:
|
196 |
+
current_mem = self.current_gpu if device == "cuda" else self.current_cpu
|
197 |
+
max_mem = self.max_gpu if device == "cuda" else self.max_cpu
|
198 |
+
|
199 |
+
if current_mem + model_size <= max_mem:
|
200 |
+
break
|
201 |
+
|
202 |
+
if not self._evict_models(model_size, device):
|
203 |
+
if device == "cuda":
|
204 |
+
device = "cpu"
|
205 |
+
else:
|
206 |
+
raise RuntimeError("Out of memory")
|
207 |
+
|
208 |
+
try:
|
209 |
+
model = raw_model.to(device)
|
210 |
+
except RuntimeError as e:
|
211 |
+
if "CUDA out of memory" in str(e):
|
212 |
+
torch.cuda.empty_cache()
|
213 |
+
model = raw_model.to(device)
|
214 |
+
|
215 |
+
new_entry = {
|
216 |
+
"model": model,
|
217 |
+
"size": model_size,
|
218 |
+
"device": device,
|
219 |
+
"access_count": 1,
|
220 |
+
"last_accessed": time.time(),
|
221 |
+
}
|
222 |
+
|
223 |
+
if key in self.b1 or key in self.b2:
|
224 |
+
self.t2[key] = new_entry
|
225 |
+
self._replace(True)
|
226 |
+
else:
|
227 |
+
self.t1[key] = new_entry
|
228 |
+
self._replace(False)
|
229 |
+
|
230 |
+
if device == "cuda":
|
231 |
+
self.current_gpu += model_size
|
232 |
+
else:
|
233 |
+
self.current_cpu += model_size
|
234 |
+
|
235 |
+
return model
|
236 |
+
|
237 |
+
def clear_device_cache(self, device: str):
|
238 |
+
with self.lock:
|
239 |
+
for cache in [self.t1, self.t2, self.b1, self.b2]:
|
240 |
+
for k in list(cache.keys()):
|
241 |
+
if cache[k]["device"] == device:
|
242 |
+
cache.pop(k)
|
243 |
+
|
244 |
+
|
245 |
+
class LRUModelCache:
|
246 |
+
def __init__(
|
247 |
+
self,
|
248 |
+
max_gpu_mem: float = 8e9,
|
249 |
+
max_cpu_mem: float = 12e9,
|
250 |
+
device_priority: list = ["cuda", "cpu"],
|
251 |
+
):
|
252 |
+
self.cache = OrderedDict()
|
253 |
+
self.max_gpu = max_gpu_mem
|
254 |
+
self.max_cpu = max_cpu_mem
|
255 |
+
self.current_gpu = 0
|
256 |
+
self.current_cpu = 0
|
257 |
+
self.lock = threading.Lock()
|
258 |
+
self.device_priority = device_priority
|
259 |
+
|
260 |
+
def generate_key(self, model_key, model_conf: dict) -> str:
|
261 |
+
loader_identifier = f"{model_key}"
|
262 |
+
unique_str = f"{loader_identifier}-{json.dumps(model_conf, sort_keys=True)}"
|
263 |
+
return hashlib.sha256(unique_str.encode()).hexdigest()
|
264 |
+
|
265 |
+
def get_device(self) -> str:
|
266 |
+
for device in self.device_priority:
|
267 |
+
if device == "cuda" and torch.cuda.is_available():
|
268 |
+
if self.current_gpu < self.max_gpu:
|
269 |
+
return device
|
270 |
+
elif device == "cpu":
|
271 |
+
if self.current_cpu < self.max_cpu:
|
272 |
+
return device
|
273 |
+
return "cpu"
|
274 |
+
|
275 |
+
def _calculate_model_size(self, model):
|
276 |
+
param_size = sum(p.numel() * p.element_size() for p in model.parameters())
|
277 |
+
buffer_size = sum(b.numel() * b.element_size() for b in model.buffers())
|
278 |
+
return param_size + buffer_size
|
279 |
+
|
280 |
+
def load_model(self, model_key, model_loader_func, model_conf: dict):
|
281 |
+
key = self.generate_key(model_key, model_conf)
|
282 |
+
|
283 |
+
with self.lock:
|
284 |
+
if key in self.cache:
|
285 |
+
self.cache.move_to_end(key) # update LRU
|
286 |
+
return self.cache[key]["model"]
|
287 |
+
|
288 |
+
device = self.get_device()
|
289 |
+
if device == "cuda":
|
290 |
+
torch.cuda.empty_cache()
|
291 |
+
|
292 |
+
try:
|
293 |
+
raw_model = model_loader_func(model_conf)
|
294 |
+
except Exception as e:
|
295 |
+
raise RuntimeError(f"Model loading failed: {str(e)}")
|
296 |
+
|
297 |
+
try:
|
298 |
+
model = raw_model.to(device)
|
299 |
+
except RuntimeError as e:
|
300 |
+
if "CUDA out of memory" in str(e):
|
301 |
+
return self._handle_oom(model_key, model_loader_func, model_conf)
|
302 |
+
raise
|
303 |
+
|
304 |
+
model_size = self._calculate_model_size(model)
|
305 |
+
|
306 |
+
while (
|
307 |
+
device == "cuda" and (self.current_gpu + model_size > self.max_gpu)
|
308 |
+
) or (device == "cpu" and (self.current_cpu + model_size > self.max_cpu)):
|
309 |
+
if not self._free_space(model_size, device):
|
310 |
+
raise RuntimeError("Insufficient memory even after cache cleanup")
|
311 |
+
|
312 |
+
if device == "cuda":
|
313 |
+
self.current_gpu += model_size
|
314 |
+
else:
|
315 |
+
self.current_cpu += model_size
|
316 |
+
|
317 |
+
self.cache[key] = {
|
318 |
+
"model": model,
|
319 |
+
"size": model_size,
|
320 |
+
"device": device,
|
321 |
+
"timestamp": time.time(),
|
322 |
+
}
|
323 |
+
|
324 |
+
return model
|
325 |
+
|
326 |
+
def _free_space(self, required_size: int, device: str) -> bool:
|
327 |
+
for key in list(self.cache.keys()):
|
328 |
+
if (device == "cuda" and self.cache[key]["device"] == "cuda") or (
|
329 |
+
device == "cpu" and self.cache[key]["device"] == "cpu"
|
330 |
+
):
|
331 |
+
self.current_gpu -= (
|
332 |
+
self.cache[key]["size"]
|
333 |
+
if self.cache[key]["device"] == "cuda"
|
334 |
+
else 0
|
335 |
+
)
|
336 |
+
self.current_cpu -= (
|
337 |
+
self.cache[key]["size"] if self.cache[key]["device"] == "cpu" else 0
|
338 |
+
)
|
339 |
+
del self.cache[key]
|
340 |
+
|
341 |
+
if (
|
342 |
+
device == "cuda"
|
343 |
+
and self.current_gpu + required_size <= self.max_gpu
|
344 |
+
) or (
|
345 |
+
device == "cpu" and self.current_cpu + required_size <= self.max_cpu
|
346 |
+
):
|
347 |
+
return True
|
348 |
+
return False
|
349 |
+
|
350 |
+
def _handle_oom(self, model_key, model_loader_func, model_conf: dict):
|
351 |
+
with self.lock:
|
352 |
+
self.clear_device_cache("cuda")
|
353 |
+
torch.cuda.empty_cache()
|
354 |
+
|
355 |
+
try:
|
356 |
+
return self.load_model(model_key, model_loader_func, model_conf)
|
357 |
+
except RuntimeError:
|
358 |
+
original_priority = self.device_priority
|
359 |
+
self.device_priority = ["cpu"]
|
360 |
+
try:
|
361 |
+
return self.load_model(model_key, model_loader_func, model_conf)
|
362 |
+
finally:
|
363 |
+
self.device_priority = original_priority
|
364 |
+
|
365 |
+
def clear_device_cache(self, device: str):
|
366 |
+
with self.lock:
|
367 |
+
keys_to_remove = [k for k, v in self.cache.items() if v["device"] == device]
|
368 |
+
for k in keys_to_remove:
|
369 |
+
self.current_gpu -= self.cache[k]["size"] if device == "cuda" else 0
|
370 |
+
self.current_cpu -= self.cache[k]["size"] if device == "cpu" else 0
|
371 |
+
del self.cache[k]
|
imcui/ui/sfm.py
CHANGED
@@ -1,164 +1,164 @@
|
|
1 |
-
import shutil
|
2 |
-
import tempfile
|
3 |
-
from pathlib import Path
|
4 |
-
from typing import Any, Dict, List
|
5 |
-
|
6 |
-
|
7 |
-
from ..hloc import (
|
8 |
-
extract_features,
|
9 |
-
logger,
|
10 |
-
match_features,
|
11 |
-
pairs_from_retrieval,
|
12 |
-
reconstruction,
|
13 |
-
visualization,
|
14 |
-
)
|
15 |
-
|
16 |
-
try:
|
17 |
-
import pycolmap
|
18 |
-
except ImportError:
|
19 |
-
logger.warning("pycolmap not installed, some features may not work")
|
20 |
-
|
21 |
-
from .viz import fig2im
|
22 |
-
|
23 |
-
|
24 |
-
class SfmEngine:
|
25 |
-
def __init__(self, cfg: Dict[str, Any] = None):
|
26 |
-
self.cfg = cfg
|
27 |
-
if "outputs" in cfg and Path(cfg["outputs"]):
|
28 |
-
outputs = Path(cfg["outputs"])
|
29 |
-
outputs.mkdir(parents=True, exist_ok=True)
|
30 |
-
else:
|
31 |
-
outputs = tempfile.mkdtemp()
|
32 |
-
self.outputs = Path(outputs)
|
33 |
-
|
34 |
-
def call(
|
35 |
-
self,
|
36 |
-
key: str,
|
37 |
-
images: Path,
|
38 |
-
camera_model: str,
|
39 |
-
camera_params: List[float],
|
40 |
-
max_keypoints: int,
|
41 |
-
keypoint_threshold: float,
|
42 |
-
match_threshold: float,
|
43 |
-
ransac_threshold: int,
|
44 |
-
ransac_confidence: float,
|
45 |
-
ransac_max_iter: int,
|
46 |
-
scene_graph: bool,
|
47 |
-
global_feature: str,
|
48 |
-
top_k: int = 10,
|
49 |
-
mapper_refine_focal_length: bool = False,
|
50 |
-
mapper_refine_principle_points: bool = False,
|
51 |
-
mapper_refine_extra_params: bool = False,
|
52 |
-
):
|
53 |
-
"""
|
54 |
-
Call a list of functions to perform feature extraction, matching, and reconstruction.
|
55 |
-
|
56 |
-
Args:
|
57 |
-
key (str): The key to retrieve the matcher and feature models.
|
58 |
-
images (Path): The directory containing the images.
|
59 |
-
outputs (Path): The directory to store the outputs.
|
60 |
-
camera_model (str): The camera model.
|
61 |
-
camera_params (List[float]): The camera parameters.
|
62 |
-
max_keypoints (int): The maximum number of features.
|
63 |
-
match_threshold (float): The match threshold.
|
64 |
-
ransac_threshold (int): The RANSAC threshold.
|
65 |
-
ransac_confidence (float): The RANSAC confidence.
|
66 |
-
ransac_max_iter (int): The maximum number of RANSAC iterations.
|
67 |
-
scene_graph (bool): Whether to compute the scene graph.
|
68 |
-
global_feature (str): Whether to compute the global feature.
|
69 |
-
top_k (int): The number of image-pair to use.
|
70 |
-
mapper_refine_focal_length (bool): Whether to refine the focal length.
|
71 |
-
mapper_refine_principle_points (bool): Whether to refine the principle points.
|
72 |
-
mapper_refine_extra_params (bool): Whether to refine the extra parameters.
|
73 |
-
|
74 |
-
Returns:
|
75 |
-
Path: The directory containing the SfM results.
|
76 |
-
"""
|
77 |
-
if len(images) == 0:
|
78 |
-
logger.error(f"{images} does not exist.")
|
79 |
-
|
80 |
-
temp_images = Path(tempfile.mkdtemp())
|
81 |
-
# copy images
|
82 |
-
logger.info(f"Copying images to {temp_images}.")
|
83 |
-
for image in images:
|
84 |
-
shutil.copy(image, temp_images)
|
85 |
-
|
86 |
-
matcher_zoo = self.cfg["matcher_zoo"]
|
87 |
-
model = matcher_zoo[key]
|
88 |
-
match_conf = model["matcher"]
|
89 |
-
match_conf["model"]["max_keypoints"] = max_keypoints
|
90 |
-
match_conf["model"]["match_threshold"] = match_threshold
|
91 |
-
|
92 |
-
feature_conf = model["feature"]
|
93 |
-
feature_conf["model"]["max_keypoints"] = max_keypoints
|
94 |
-
feature_conf["model"]["keypoint_threshold"] = keypoint_threshold
|
95 |
-
|
96 |
-
# retrieval
|
97 |
-
retrieval_name = self.cfg.get("retrieval_name", "netvlad")
|
98 |
-
retrieval_conf = extract_features.confs[retrieval_name]
|
99 |
-
|
100 |
-
mapper_options = {
|
101 |
-
"ba_refine_extra_params": mapper_refine_extra_params,
|
102 |
-
"ba_refine_focal_length": mapper_refine_focal_length,
|
103 |
-
"ba_refine_principal_point": mapper_refine_principle_points,
|
104 |
-
"ba_local_max_num_iterations": 40,
|
105 |
-
"ba_local_max_refinements": 3,
|
106 |
-
"ba_global_max_num_iterations": 100,
|
107 |
-
# below 3 options are for individual/video data, for internet photos, they should be left
|
108 |
-
# default
|
109 |
-
"min_focal_length_ratio": 0.1,
|
110 |
-
"max_focal_length_ratio": 10,
|
111 |
-
"max_extra_param": 1e15,
|
112 |
-
}
|
113 |
-
|
114 |
-
sfm_dir = self.outputs / "sfm_{}".format(key)
|
115 |
-
sfm_pairs = self.outputs / "pairs-sfm.txt"
|
116 |
-
sfm_dir.mkdir(exist_ok=True, parents=True)
|
117 |
-
|
118 |
-
# extract features
|
119 |
-
retrieval_path = extract_features.main(
|
120 |
-
retrieval_conf, temp_images, self.outputs
|
121 |
-
)
|
122 |
-
pairs_from_retrieval.main(retrieval_path, sfm_pairs, num_matched=top_k)
|
123 |
-
|
124 |
-
feature_path = extract_features.main(feature_conf, temp_images, self.outputs)
|
125 |
-
# match features
|
126 |
-
match_path = match_features.main(
|
127 |
-
match_conf, sfm_pairs, feature_conf["output"], self.outputs
|
128 |
-
)
|
129 |
-
# reconstruction
|
130 |
-
already_sfm = False
|
131 |
-
if sfm_dir.exists():
|
132 |
-
try:
|
133 |
-
model = pycolmap.Reconstruction(str(sfm_dir))
|
134 |
-
already_sfm = True
|
135 |
-
except ValueError:
|
136 |
-
logger.info(f"sfm_dir not exists model: {sfm_dir}")
|
137 |
-
if not already_sfm:
|
138 |
-
model = reconstruction.main(
|
139 |
-
sfm_dir,
|
140 |
-
temp_images,
|
141 |
-
sfm_pairs,
|
142 |
-
feature_path,
|
143 |
-
match_path,
|
144 |
-
mapper_options=mapper_options,
|
145 |
-
)
|
146 |
-
|
147 |
-
vertices = []
|
148 |
-
for point3D_id, point3D in model.points3D.items():
|
149 |
-
vertices.append([point3D.xyz, point3D.color])
|
150 |
-
|
151 |
-
model_3d = sfm_dir / "points3D.obj"
|
152 |
-
with open(model_3d, "w") as f:
|
153 |
-
for p, c in vertices:
|
154 |
-
# Write vertex position
|
155 |
-
f.write("v {} {} {}\n".format(p[0], p[1], p[2]))
|
156 |
-
# Write vertex normal (color)
|
157 |
-
f.write(
|
158 |
-
"vn {} {} {}\n".format(c[0] / 255.0, c[1] / 255.0, c[2] / 255.0)
|
159 |
-
)
|
160 |
-
viz_2d = visualization.visualize_sfm_2d(
|
161 |
-
model, temp_images, color_by="visibility", n=2, dpi=300
|
162 |
-
)
|
163 |
-
|
164 |
-
return model_3d, fig2im(viz_2d) / 255.0
|
|
|
1 |
+
import shutil
|
2 |
+
import tempfile
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Any, Dict, List
|
5 |
+
|
6 |
+
|
7 |
+
from ..hloc import (
|
8 |
+
extract_features,
|
9 |
+
logger,
|
10 |
+
match_features,
|
11 |
+
pairs_from_retrieval,
|
12 |
+
reconstruction,
|
13 |
+
visualization,
|
14 |
+
)
|
15 |
+
|
16 |
+
try:
|
17 |
+
import pycolmap
|
18 |
+
except ImportError:
|
19 |
+
logger.warning("pycolmap not installed, some features may not work")
|
20 |
+
|
21 |
+
from .viz import fig2im
|
22 |
+
|
23 |
+
|
24 |
+
class SfmEngine:
|
25 |
+
def __init__(self, cfg: Dict[str, Any] = None):
|
26 |
+
self.cfg = cfg
|
27 |
+
if "outputs" in cfg and Path(cfg["outputs"]):
|
28 |
+
outputs = Path(cfg["outputs"])
|
29 |
+
outputs.mkdir(parents=True, exist_ok=True)
|
30 |
+
else:
|
31 |
+
outputs = tempfile.mkdtemp()
|
32 |
+
self.outputs = Path(outputs)
|
33 |
+
|
34 |
+
def call(
|
35 |
+
self,
|
36 |
+
key: str,
|
37 |
+
images: Path,
|
38 |
+
camera_model: str,
|
39 |
+
camera_params: List[float],
|
40 |
+
max_keypoints: int,
|
41 |
+
keypoint_threshold: float,
|
42 |
+
match_threshold: float,
|
43 |
+
ransac_threshold: int,
|
44 |
+
ransac_confidence: float,
|
45 |
+
ransac_max_iter: int,
|
46 |
+
scene_graph: bool,
|
47 |
+
global_feature: str,
|
48 |
+
top_k: int = 10,
|
49 |
+
mapper_refine_focal_length: bool = False,
|
50 |
+
mapper_refine_principle_points: bool = False,
|
51 |
+
mapper_refine_extra_params: bool = False,
|
52 |
+
):
|
53 |
+
"""
|
54 |
+
Call a list of functions to perform feature extraction, matching, and reconstruction.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
key (str): The key to retrieve the matcher and feature models.
|
58 |
+
images (Path): The directory containing the images.
|
59 |
+
outputs (Path): The directory to store the outputs.
|
60 |
+
camera_model (str): The camera model.
|
61 |
+
camera_params (List[float]): The camera parameters.
|
62 |
+
max_keypoints (int): The maximum number of features.
|
63 |
+
match_threshold (float): The match threshold.
|
64 |
+
ransac_threshold (int): The RANSAC threshold.
|
65 |
+
ransac_confidence (float): The RANSAC confidence.
|
66 |
+
ransac_max_iter (int): The maximum number of RANSAC iterations.
|
67 |
+
scene_graph (bool): Whether to compute the scene graph.
|
68 |
+
global_feature (str): Whether to compute the global feature.
|
69 |
+
top_k (int): The number of image-pair to use.
|
70 |
+
mapper_refine_focal_length (bool): Whether to refine the focal length.
|
71 |
+
mapper_refine_principle_points (bool): Whether to refine the principle points.
|
72 |
+
mapper_refine_extra_params (bool): Whether to refine the extra parameters.
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
Path: The directory containing the SfM results.
|
76 |
+
"""
|
77 |
+
if len(images) == 0:
|
78 |
+
logger.error(f"{images} does not exist.")
|
79 |
+
|
80 |
+
temp_images = Path(tempfile.mkdtemp())
|
81 |
+
# copy images
|
82 |
+
logger.info(f"Copying images to {temp_images}.")
|
83 |
+
for image in images:
|
84 |
+
shutil.copy(image, temp_images)
|
85 |
+
|
86 |
+
matcher_zoo = self.cfg["matcher_zoo"]
|
87 |
+
model = matcher_zoo[key]
|
88 |
+
match_conf = model["matcher"]
|
89 |
+
match_conf["model"]["max_keypoints"] = max_keypoints
|
90 |
+
match_conf["model"]["match_threshold"] = match_threshold
|
91 |
+
|
92 |
+
feature_conf = model["feature"]
|
93 |
+
feature_conf["model"]["max_keypoints"] = max_keypoints
|
94 |
+
feature_conf["model"]["keypoint_threshold"] = keypoint_threshold
|
95 |
+
|
96 |
+
# retrieval
|
97 |
+
retrieval_name = self.cfg.get("retrieval_name", "netvlad")
|
98 |
+
retrieval_conf = extract_features.confs[retrieval_name]
|
99 |
+
|
100 |
+
mapper_options = {
|
101 |
+
"ba_refine_extra_params": mapper_refine_extra_params,
|
102 |
+
"ba_refine_focal_length": mapper_refine_focal_length,
|
103 |
+
"ba_refine_principal_point": mapper_refine_principle_points,
|
104 |
+
"ba_local_max_num_iterations": 40,
|
105 |
+
"ba_local_max_refinements": 3,
|
106 |
+
"ba_global_max_num_iterations": 100,
|
107 |
+
# below 3 options are for individual/video data, for internet photos, they should be left
|
108 |
+
# default
|
109 |
+
"min_focal_length_ratio": 0.1,
|
110 |
+
"max_focal_length_ratio": 10,
|
111 |
+
"max_extra_param": 1e15,
|
112 |
+
}
|
113 |
+
|
114 |
+
sfm_dir = self.outputs / "sfm_{}".format(key)
|
115 |
+
sfm_pairs = self.outputs / "pairs-sfm.txt"
|
116 |
+
sfm_dir.mkdir(exist_ok=True, parents=True)
|
117 |
+
|
118 |
+
# extract features
|
119 |
+
retrieval_path = extract_features.main(
|
120 |
+
retrieval_conf, temp_images, self.outputs
|
121 |
+
)
|
122 |
+
pairs_from_retrieval.main(retrieval_path, sfm_pairs, num_matched=top_k)
|
123 |
+
|
124 |
+
feature_path = extract_features.main(feature_conf, temp_images, self.outputs)
|
125 |
+
# match features
|
126 |
+
match_path = match_features.main(
|
127 |
+
match_conf, sfm_pairs, feature_conf["output"], self.outputs
|
128 |
+
)
|
129 |
+
# reconstruction
|
130 |
+
already_sfm = False
|
131 |
+
if sfm_dir.exists():
|
132 |
+
try:
|
133 |
+
model = pycolmap.Reconstruction(str(sfm_dir))
|
134 |
+
already_sfm = True
|
135 |
+
except ValueError:
|
136 |
+
logger.info(f"sfm_dir not exists model: {sfm_dir}")
|
137 |
+
if not already_sfm:
|
138 |
+
model = reconstruction.main(
|
139 |
+
sfm_dir,
|
140 |
+
temp_images,
|
141 |
+
sfm_pairs,
|
142 |
+
feature_path,
|
143 |
+
match_path,
|
144 |
+
mapper_options=mapper_options,
|
145 |
+
)
|
146 |
+
|
147 |
+
vertices = []
|
148 |
+
for point3D_id, point3D in model.points3D.items():
|
149 |
+
vertices.append([point3D.xyz, point3D.color])
|
150 |
+
|
151 |
+
model_3d = sfm_dir / "points3D.obj"
|
152 |
+
with open(model_3d, "w") as f:
|
153 |
+
for p, c in vertices:
|
154 |
+
# Write vertex position
|
155 |
+
f.write("v {} {} {}\n".format(p[0], p[1], p[2]))
|
156 |
+
# Write vertex normal (color)
|
157 |
+
f.write(
|
158 |
+
"vn {} {} {}\n".format(c[0] / 255.0, c[1] / 255.0, c[2] / 255.0)
|
159 |
+
)
|
160 |
+
viz_2d = visualization.visualize_sfm_2d(
|
161 |
+
model, temp_images, color_by="visibility", n=2, dpi=300
|
162 |
+
)
|
163 |
+
|
164 |
+
return model_3d, fig2im(viz_2d) / 255.0
|
imcui/ui/utils.py
CHANGED
@@ -1,1164 +1,1108 @@
|
|
1 |
-
import os
|
2 |
-
import pickle
|
3 |
-
import random
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
import
|
13 |
-
import
|
14 |
-
import
|
15 |
-
import
|
16 |
-
import
|
17 |
-
|
18 |
-
from
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
from
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
return
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
"""
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
"""
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
"""
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
"
|
226 |
-
"
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
return
|
244 |
-
|
245 |
-
#
|
246 |
-
def
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
mkpts0: np.ndarray
|
468 |
-
mkpts1: np.ndarray
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
return
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
if
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
pred
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
geo_info:
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
H
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
return
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
[
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
return
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
) -> Tuple[Optional[np.ndarray], Optional[
|
715 |
-
"""
|
716 |
-
|
717 |
-
|
718 |
-
Args:
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
""
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
):
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
image0:
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
]
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
)
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
|
970 |
-
)
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
|
992 |
-
|
993 |
-
|
994 |
-
|
995 |
-
|
996 |
-
|
997 |
-
|
998 |
-
|
999 |
-
|
1000 |
-
|
1001 |
-
|
1002 |
-
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
1013 |
-
|
1014 |
-
|
1015 |
-
|
1016 |
-
|
1017 |
-
|
1018 |
-
|
1019 |
-
|
1020 |
-
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
|
1025 |
-
|
1026 |
-
|
1027 |
-
|
1028 |
-
|
1029 |
-
|
1030 |
-
|
1031 |
-
|
1032 |
-
|
1033 |
-
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
-
|
1041 |
-
)
|
1042 |
-
|
1043 |
-
#
|
1044 |
-
|
1045 |
-
|
1046 |
-
|
1047 |
-
]
|
1048 |
-
|
1049 |
-
|
1050 |
-
|
1051 |
-
|
1052 |
-
|
1053 |
-
|
1054 |
-
|
1055 |
-
|
1056 |
-
|
1057 |
-
|
1058 |
-
|
1059 |
-
|
1060 |
-
|
1061 |
-
|
1062 |
-
|
1063 |
-
|
1064 |
-
|
1065 |
-
|
1066 |
-
|
1067 |
-
|
1068 |
-
|
1069 |
-
|
1070 |
-
|
1071 |
-
|
1072 |
-
|
1073 |
-
|
1074 |
-
|
1075 |
-
|
1076 |
-
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
1086 |
-
|
1087 |
-
|
1088 |
-
|
1089 |
-
|
1090 |
-
|
1091 |
-
|
1092 |
-
|
1093 |
-
|
1094 |
-
|
1095 |
-
|
1096 |
-
|
1097 |
-
|
1098 |
-
|
1099 |
-
|
1100 |
-
|
1101 |
-
|
1102 |
-
|
1103 |
-
|
1104 |
-
|
1105 |
-
|
1106 |
-
|
1107 |
-
|
1108 |
-
|
1109 |
-
with open(tmp_state_cache, "wb") as f:
|
1110 |
-
pickle.dump(state_cache, f)
|
1111 |
-
logger.info("Dump results done!")
|
1112 |
-
|
1113 |
-
yield (
|
1114 |
-
output_keypoints,
|
1115 |
-
output_matches_raw,
|
1116 |
-
output_matches_ransac,
|
1117 |
-
{
|
1118 |
-
"num_raw_matches": num_matches_raw,
|
1119 |
-
"num_ransac_matches": num_matches_ransac,
|
1120 |
-
},
|
1121 |
-
{
|
1122 |
-
"match_conf": match_conf,
|
1123 |
-
"extractor_conf": extract_conf,
|
1124 |
-
},
|
1125 |
-
{
|
1126 |
-
"geom_info": pred.get("geom_info", {}),
|
1127 |
-
},
|
1128 |
-
output_wrapped,
|
1129 |
-
state_cache,
|
1130 |
-
tmp_state_cache,
|
1131 |
-
)
|
1132 |
-
|
1133 |
-
|
1134 |
-
# @ref: https://docs.opencv.org/4.x/d0/d74/md__build_4_x-contrib_docs-lin64_opencv_doc_tutorials_calib3d_usac.html
|
1135 |
-
# AND: https://opencv.org/blog/2021/06/09/evaluating-opencvs-new-ransacs
|
1136 |
-
ransac_zoo = {
|
1137 |
-
"POSELIB": "LO-RANSAC",
|
1138 |
-
"CV2_RANSAC": cv2.RANSAC,
|
1139 |
-
"CV2_USAC_MAGSAC": cv2.USAC_MAGSAC,
|
1140 |
-
"CV2_USAC_DEFAULT": cv2.USAC_DEFAULT,
|
1141 |
-
"CV2_USAC_FM_8PTS": cv2.USAC_FM_8PTS,
|
1142 |
-
"CV2_USAC_PROSAC": cv2.USAC_PROSAC,
|
1143 |
-
"CV2_USAC_FAST": cv2.USAC_FAST,
|
1144 |
-
"CV2_USAC_ACCURATE": cv2.USAC_ACCURATE,
|
1145 |
-
"CV2_USAC_PARALLEL": cv2.USAC_PARALLEL,
|
1146 |
-
}
|
1147 |
-
|
1148 |
-
|
1149 |
-
def rotate_image(input_path, degrees, output_path):
|
1150 |
-
img = Image.open(input_path)
|
1151 |
-
img_rotated = img.rotate(-degrees)
|
1152 |
-
img_rotated.save(output_path)
|
1153 |
-
|
1154 |
-
|
1155 |
-
def scale_image(input_path, scale_factor, output_path):
|
1156 |
-
img = Image.open(input_path)
|
1157 |
-
width, height = img.size
|
1158 |
-
new_width = int(width * scale_factor)
|
1159 |
-
new_height = int(height * scale_factor)
|
1160 |
-
new_img = Image.new("RGB", (width, height), (0, 0, 0))
|
1161 |
-
img_resized = img.resize((new_width, new_height))
|
1162 |
-
position = ((width - new_width) // 2, (height - new_height) // 2)
|
1163 |
-
new_img.paste(img_resized, position)
|
1164 |
-
new_img.save(output_path)
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import random
|
4 |
+
import time
|
5 |
+
import warnings
|
6 |
+
from itertools import combinations
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
9 |
+
from datasets import load_dataset
|
10 |
+
|
11 |
+
import cv2
|
12 |
+
import gradio as gr
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import numpy as np
|
15 |
+
import poselib
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
from ..hloc import (
|
19 |
+
DEVICE,
|
20 |
+
extract_features,
|
21 |
+
extractors,
|
22 |
+
logger,
|
23 |
+
match_dense,
|
24 |
+
match_features,
|
25 |
+
matchers,
|
26 |
+
DATASETS_REPO_ID,
|
27 |
+
)
|
28 |
+
from ..hloc.utils.base_model import dynamic_load
|
29 |
+
from .viz import display_keypoints, display_matches, fig2im, plot_images
|
30 |
+
from .modelcache import ARCSizeAwareModelCache as ModelCache
|
31 |
+
|
32 |
+
warnings.simplefilter("ignore")
|
33 |
+
|
34 |
+
ROOT = Path(__file__).parents[1]
|
35 |
+
# some default values
|
36 |
+
DEFAULT_SETTING_THRESHOLD = 0.1
|
37 |
+
DEFAULT_SETTING_MAX_FEATURES = 2000
|
38 |
+
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD = 0.01
|
39 |
+
DEFAULT_ENABLE_RANSAC = True
|
40 |
+
DEFAULT_RANSAC_METHOD = "CV2_USAC_MAGSAC"
|
41 |
+
DEFAULT_RANSAC_REPROJ_THRESHOLD = 8
|
42 |
+
DEFAULT_RANSAC_CONFIDENCE = 0.9999
|
43 |
+
DEFAULT_RANSAC_MAX_ITER = 10000
|
44 |
+
DEFAULT_MIN_NUM_MATCHES = 4
|
45 |
+
DEFAULT_MATCHING_THRESHOLD = 0.2
|
46 |
+
DEFAULT_SETTING_GEOMETRY = "Homography"
|
47 |
+
GRADIO_VERSION = gr.__version__.split(".")[0]
|
48 |
+
MATCHER_ZOO = None
|
49 |
+
|
50 |
+
|
51 |
+
model_cache = ModelCache()
|
52 |
+
|
53 |
+
|
54 |
+
def load_config(config_name: str) -> Dict[str, Any]:
|
55 |
+
"""
|
56 |
+
Load a YAML configuration file.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
config_name: The path to the YAML configuration file.
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
The configuration dictionary, with string keys and arbitrary values.
|
63 |
+
"""
|
64 |
+
import yaml
|
65 |
+
|
66 |
+
with open(config_name, "r") as stream:
|
67 |
+
try:
|
68 |
+
config: Dict[str, Any] = yaml.safe_load(stream)
|
69 |
+
except yaml.YAMLError as exc:
|
70 |
+
logger.error(exc)
|
71 |
+
return config
|
72 |
+
|
73 |
+
|
74 |
+
def get_matcher_zoo(
|
75 |
+
matcher_zoo: Dict[str, Dict[str, Union[str, bool]]],
|
76 |
+
) -> Dict[str, Dict[str, Union[Callable, bool]]]:
|
77 |
+
"""
|
78 |
+
Restore matcher configurations from a dictionary.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
matcher_zoo: A dictionary with the matcher configurations,
|
82 |
+
where the configuration is a dictionary as loaded from a YAML file.
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
A dictionary with the matcher configurations, where the configuration is
|
86 |
+
a function or a function instead of a string.
|
87 |
+
"""
|
88 |
+
matcher_zoo_restored = {}
|
89 |
+
for k, v in matcher_zoo.items():
|
90 |
+
matcher_zoo_restored[k] = parse_match_config(v)
|
91 |
+
return matcher_zoo_restored
|
92 |
+
|
93 |
+
|
94 |
+
def parse_match_config(conf):
|
95 |
+
if conf["dense"]:
|
96 |
+
return {
|
97 |
+
"matcher": match_dense.confs.get(conf["matcher"]),
|
98 |
+
"dense": True,
|
99 |
+
"info": conf.get("info", {}),
|
100 |
+
}
|
101 |
+
else:
|
102 |
+
return {
|
103 |
+
"feature": extract_features.confs.get(conf["feature"]),
|
104 |
+
"matcher": match_features.confs.get(conf["matcher"]),
|
105 |
+
"dense": False,
|
106 |
+
"info": conf.get("info", {}),
|
107 |
+
}
|
108 |
+
|
109 |
+
|
110 |
+
def get_model(match_conf: Dict[str, Any]):
|
111 |
+
"""
|
112 |
+
Load a matcher model from the provided configuration.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
match_conf: A dictionary containing the model configuration.
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
A matcher model instance.
|
119 |
+
"""
|
120 |
+
Model = dynamic_load(matchers, match_conf["model"]["name"])
|
121 |
+
model = Model(match_conf["model"]).eval().to(DEVICE)
|
122 |
+
return model
|
123 |
+
|
124 |
+
|
125 |
+
def get_feature_model(conf: Dict[str, Dict[str, Any]]):
|
126 |
+
"""
|
127 |
+
Load a feature extraction model from the provided configuration.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
conf: A dictionary containing the model configuration.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
A feature extraction model instance.
|
134 |
+
"""
|
135 |
+
Model = dynamic_load(extractors, conf["model"]["name"])
|
136 |
+
model = Model(conf["model"]).eval().to(DEVICE)
|
137 |
+
return model
|
138 |
+
|
139 |
+
|
140 |
+
def download_example_images(repo_id, output_dir):
|
141 |
+
logger.info(f"Download example dataset from huggingface: {repo_id}")
|
142 |
+
dataset = load_dataset(repo_id)
|
143 |
+
Path(output_dir).mkdir(parents=True, exist_ok=True)
|
144 |
+
for example in dataset["train"]: # Assuming the dataset is in the "train" split
|
145 |
+
file_path = example["path"]
|
146 |
+
image = example["image"] # Access the PIL.Image object directly
|
147 |
+
full_path = os.path.join(output_dir, file_path)
|
148 |
+
Path(os.path.dirname(full_path)).mkdir(parents=True, exist_ok=True)
|
149 |
+
image.save(full_path)
|
150 |
+
logger.info(f"Images saved to {output_dir} successfully.")
|
151 |
+
return Path(output_dir)
|
152 |
+
|
153 |
+
|
154 |
+
def gen_examples(data_root: Path):
|
155 |
+
random.seed(1)
|
156 |
+
example_matchers = [
|
157 |
+
"disk+lightglue",
|
158 |
+
"xfeat(sparse)",
|
159 |
+
"dedode",
|
160 |
+
"loftr",
|
161 |
+
"disk",
|
162 |
+
"RoMa",
|
163 |
+
"d2net",
|
164 |
+
"aspanformer",
|
165 |
+
"topicfm",
|
166 |
+
"superpoint+superglue",
|
167 |
+
"superpoint+lightglue",
|
168 |
+
"superpoint+mnn",
|
169 |
+
"disk",
|
170 |
+
]
|
171 |
+
data_root = Path(data_root)
|
172 |
+
if not Path(data_root).exists():
|
173 |
+
try:
|
174 |
+
download_example_images(DATASETS_REPO_ID, data_root)
|
175 |
+
except Exception as e:
|
176 |
+
logger.error(f"download_example_images error : {e}")
|
177 |
+
data_root = ROOT / "datasets"
|
178 |
+
if not Path(data_root / "sacre_coeur/mapping").exists():
|
179 |
+
download_example_images(DATASETS_REPO_ID, data_root)
|
180 |
+
|
181 |
+
def distribute_elements(A, B):
|
182 |
+
new_B = np.array(B, copy=True).flatten()
|
183 |
+
np.random.shuffle(new_B)
|
184 |
+
new_B = np.resize(new_B, len(A))
|
185 |
+
np.random.shuffle(new_B)
|
186 |
+
return new_B.tolist()
|
187 |
+
|
188 |
+
# normal examples
|
189 |
+
def gen_images_pairs(count: int = 5):
|
190 |
+
path = str(data_root / "sacre_coeur/mapping")
|
191 |
+
imgs_list = [
|
192 |
+
os.path.join(path, file)
|
193 |
+
for file in os.listdir(path)
|
194 |
+
if file.lower().endswith((".jpg", ".jpeg", ".png"))
|
195 |
+
]
|
196 |
+
pairs = list(combinations(imgs_list, 2))
|
197 |
+
if len(pairs) < count:
|
198 |
+
count = len(pairs)
|
199 |
+
selected = random.sample(range(len(pairs)), count)
|
200 |
+
return [pairs[i] for i in selected]
|
201 |
+
|
202 |
+
# rotated examples
|
203 |
+
def gen_rot_image_pairs(count: int = 5):
|
204 |
+
path = data_root / "sacre_coeur/mapping"
|
205 |
+
path_rot = data_root / "sacre_coeur/mapping_rot"
|
206 |
+
rot_list = [45, 180, 90, 225, 270]
|
207 |
+
pairs = []
|
208 |
+
for file in os.listdir(path):
|
209 |
+
if file.lower().endswith((".jpg", ".jpeg", ".png")):
|
210 |
+
for rot in rot_list:
|
211 |
+
file_rot = "{}_rot{}.jpg".format(Path(file).stem, rot)
|
212 |
+
if (path_rot / file_rot).exists():
|
213 |
+
pairs.append(
|
214 |
+
[
|
215 |
+
path / file,
|
216 |
+
path_rot / file_rot,
|
217 |
+
]
|
218 |
+
)
|
219 |
+
if len(pairs) < count:
|
220 |
+
count = len(pairs)
|
221 |
+
selected = random.sample(range(len(pairs)), count)
|
222 |
+
return [pairs[i] for i in selected]
|
223 |
+
|
224 |
+
def gen_scale_image_pairs(count: int = 5):
|
225 |
+
path = data_root / "sacre_coeur/mapping"
|
226 |
+
path_scale = data_root / "sacre_coeur/mapping_scale"
|
227 |
+
scale_list = [0.3, 0.5]
|
228 |
+
pairs = []
|
229 |
+
for file in os.listdir(path):
|
230 |
+
if file.lower().endswith((".jpg", ".jpeg", ".png")):
|
231 |
+
for scale in scale_list:
|
232 |
+
file_scale = "{}_scale{}.jpg".format(Path(file).stem, scale)
|
233 |
+
if (path_scale / file_scale).exists():
|
234 |
+
pairs.append(
|
235 |
+
[
|
236 |
+
path / file,
|
237 |
+
path_scale / file_scale,
|
238 |
+
]
|
239 |
+
)
|
240 |
+
if len(pairs) < count:
|
241 |
+
count = len(pairs)
|
242 |
+
selected = random.sample(range(len(pairs)), count)
|
243 |
+
return [pairs[i] for i in selected]
|
244 |
+
|
245 |
+
# extramely hard examples
|
246 |
+
def gen_image_pairs_wxbs(count: int = None):
|
247 |
+
prefix = "wxbs_benchmark/.WxBS/v1.1"
|
248 |
+
wxbs_path = data_root / prefix
|
249 |
+
pairs = []
|
250 |
+
for catg in os.listdir(wxbs_path):
|
251 |
+
catg_path = wxbs_path / catg
|
252 |
+
if not catg_path.is_dir():
|
253 |
+
continue
|
254 |
+
for scene in os.listdir(catg_path):
|
255 |
+
scene_path = catg_path / scene
|
256 |
+
if not scene_path.is_dir():
|
257 |
+
continue
|
258 |
+
img1_path = scene_path / "01.png"
|
259 |
+
img2_path = scene_path / "02.png"
|
260 |
+
if img1_path.exists() and img2_path.exists():
|
261 |
+
pairs.append([str(img1_path), str(img2_path)])
|
262 |
+
return pairs
|
263 |
+
|
264 |
+
# image pair path
|
265 |
+
pairs = gen_images_pairs()
|
266 |
+
pairs += gen_rot_image_pairs()
|
267 |
+
pairs += gen_scale_image_pairs()
|
268 |
+
pairs += gen_image_pairs_wxbs()
|
269 |
+
|
270 |
+
match_setting_threshold = DEFAULT_SETTING_THRESHOLD
|
271 |
+
match_setting_max_features = DEFAULT_SETTING_MAX_FEATURES
|
272 |
+
detect_keypoints_threshold = DEFAULT_DEFAULT_KEYPOINT_THRESHOLD
|
273 |
+
ransac_method = DEFAULT_RANSAC_METHOD
|
274 |
+
ransac_reproj_threshold = DEFAULT_RANSAC_REPROJ_THRESHOLD
|
275 |
+
ransac_confidence = DEFAULT_RANSAC_CONFIDENCE
|
276 |
+
ransac_max_iter = DEFAULT_RANSAC_MAX_ITER
|
277 |
+
input_lists = []
|
278 |
+
dist_examples = distribute_elements(pairs, example_matchers)
|
279 |
+
for pair, mt in zip(pairs, dist_examples):
|
280 |
+
input_lists.append(
|
281 |
+
[
|
282 |
+
pair[0],
|
283 |
+
pair[1],
|
284 |
+
match_setting_threshold,
|
285 |
+
match_setting_max_features,
|
286 |
+
detect_keypoints_threshold,
|
287 |
+
mt,
|
288 |
+
# enable_ransac,
|
289 |
+
ransac_method,
|
290 |
+
ransac_reproj_threshold,
|
291 |
+
ransac_confidence,
|
292 |
+
ransac_max_iter,
|
293 |
+
]
|
294 |
+
)
|
295 |
+
return input_lists
|
296 |
+
|
297 |
+
|
298 |
+
def set_null_pred(feature_type: str, pred: dict):
|
299 |
+
if feature_type == "KEYPOINT":
|
300 |
+
pred["mmkeypoints0_orig"] = np.array([])
|
301 |
+
pred["mmkeypoints1_orig"] = np.array([])
|
302 |
+
pred["mmconf"] = np.array([])
|
303 |
+
elif feature_type == "LINE":
|
304 |
+
pred["mline_keypoints0_orig"] = np.array([])
|
305 |
+
pred["mline_keypoints1_orig"] = np.array([])
|
306 |
+
pred["H"] = None
|
307 |
+
pred["geom_info"] = {}
|
308 |
+
return pred
|
309 |
+
|
310 |
+
|
311 |
+
def _filter_matches_opencv(
|
312 |
+
kp0: np.ndarray,
|
313 |
+
kp1: np.ndarray,
|
314 |
+
method: int = cv2.RANSAC,
|
315 |
+
reproj_threshold: float = 3.0,
|
316 |
+
confidence: float = 0.99,
|
317 |
+
max_iter: int = 2000,
|
318 |
+
geometry_type: str = "Homography",
|
319 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
320 |
+
"""
|
321 |
+
Filters matches between two sets of keypoints using OpenCV's findHomography.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
kp0 (np.ndarray): Array of keypoints from the first image.
|
325 |
+
kp1 (np.ndarray): Array of keypoints from the second image.
|
326 |
+
method (int, optional): RANSAC method. Defaults to "cv2.RANSAC".
|
327 |
+
reproj_threshold (float, optional): RANSAC reprojection threshold. Defaults to 3.0.
|
328 |
+
confidence (float, optional): RANSAC confidence. Defaults to 0.99.
|
329 |
+
max_iter (int, optional): RANSAC maximum iterations. Defaults to 2000.
|
330 |
+
geometry_type (str, optional): Type of geometry. Defaults to "Homography".
|
331 |
+
|
332 |
+
Returns:
|
333 |
+
Tuple[np.ndarray, np.ndarray]: Homography matrix and mask.
|
334 |
+
"""
|
335 |
+
if geometry_type == "Homography":
|
336 |
+
try:
|
337 |
+
M, mask = cv2.findHomography(
|
338 |
+
kp0,
|
339 |
+
kp1,
|
340 |
+
method=method,
|
341 |
+
ransacReprojThreshold=reproj_threshold,
|
342 |
+
confidence=confidence,
|
343 |
+
maxIters=max_iter,
|
344 |
+
)
|
345 |
+
except cv2.error:
|
346 |
+
logger.error("compute findHomography error, len(kp0): {}".format(len(kp0)))
|
347 |
+
return None, None
|
348 |
+
elif geometry_type == "Fundamental":
|
349 |
+
try:
|
350 |
+
M, mask = cv2.findFundamentalMat(
|
351 |
+
kp0,
|
352 |
+
kp1,
|
353 |
+
method=method,
|
354 |
+
ransacReprojThreshold=reproj_threshold,
|
355 |
+
confidence=confidence,
|
356 |
+
maxIters=max_iter,
|
357 |
+
)
|
358 |
+
except cv2.error:
|
359 |
+
logger.error(
|
360 |
+
"compute findFundamentalMat error, len(kp0): {}".format(len(kp0))
|
361 |
+
)
|
362 |
+
return None, None
|
363 |
+
mask = np.array(mask.ravel().astype("bool"), dtype="bool")
|
364 |
+
return M, mask
|
365 |
+
|
366 |
+
|
367 |
+
def _filter_matches_poselib(
|
368 |
+
kp0: np.ndarray,
|
369 |
+
kp1: np.ndarray,
|
370 |
+
method: int = None, # not used
|
371 |
+
reproj_threshold: float = 3,
|
372 |
+
confidence: float = 0.99,
|
373 |
+
max_iter: int = 2000,
|
374 |
+
geometry_type: str = "Homography",
|
375 |
+
) -> dict:
|
376 |
+
"""
|
377 |
+
Filters matches between two sets of keypoints using the poselib library.
|
378 |
+
|
379 |
+
Args:
|
380 |
+
kp0 (np.ndarray): Array of keypoints from the first image.
|
381 |
+
kp1 (np.ndarray): Array of keypoints from the second image.
|
382 |
+
method (str, optional): RANSAC method. Defaults to "RANSAC".
|
383 |
+
reproj_threshold (float, optional): RANSAC reprojection threshold. Defaults to 3.
|
384 |
+
confidence (float, optional): RANSAC confidence. Defaults to 0.99.
|
385 |
+
max_iter (int, optional): RANSAC maximum iterations. Defaults to 2000.
|
386 |
+
geometry_type (str, optional): Type of geometry. Defaults to "Homography".
|
387 |
+
|
388 |
+
Returns:
|
389 |
+
dict: Information about the homography estimation.
|
390 |
+
"""
|
391 |
+
ransac_options = {
|
392 |
+
"max_iterations": max_iter,
|
393 |
+
# "min_iterations": min_iter,
|
394 |
+
"success_prob": confidence,
|
395 |
+
"max_reproj_error": reproj_threshold,
|
396 |
+
# "progressive_sampling": args.sampler.lower() == 'prosac'
|
397 |
+
}
|
398 |
+
|
399 |
+
if geometry_type == "Homography":
|
400 |
+
M, info = poselib.estimate_homography(kp0, kp1, ransac_options)
|
401 |
+
elif geometry_type == "Fundamental":
|
402 |
+
M, info = poselib.estimate_fundamental(kp0, kp1, ransac_options)
|
403 |
+
else:
|
404 |
+
raise NotImplementedError
|
405 |
+
|
406 |
+
return M, np.array(info["inliers"])
|
407 |
+
|
408 |
+
|
409 |
+
def proc_ransac_matches(
|
410 |
+
mkpts0: np.ndarray,
|
411 |
+
mkpts1: np.ndarray,
|
412 |
+
ransac_method: str = DEFAULT_RANSAC_METHOD,
|
413 |
+
ransac_reproj_threshold: float = 3.0,
|
414 |
+
ransac_confidence: float = 0.99,
|
415 |
+
ransac_max_iter: int = 2000,
|
416 |
+
geometry_type: str = "Homography",
|
417 |
+
):
|
418 |
+
if ransac_method.startswith("CV2"):
|
419 |
+
logger.info(f"ransac_method: {ransac_method}, geometry_type: {geometry_type}")
|
420 |
+
return _filter_matches_opencv(
|
421 |
+
mkpts0,
|
422 |
+
mkpts1,
|
423 |
+
ransac_zoo[ransac_method],
|
424 |
+
ransac_reproj_threshold,
|
425 |
+
ransac_confidence,
|
426 |
+
ransac_max_iter,
|
427 |
+
geometry_type,
|
428 |
+
)
|
429 |
+
elif ransac_method.startswith("POSELIB"):
|
430 |
+
logger.info(f"ransac_method: {ransac_method}, geometry_type: {geometry_type}")
|
431 |
+
return _filter_matches_poselib(
|
432 |
+
mkpts0,
|
433 |
+
mkpts1,
|
434 |
+
None,
|
435 |
+
ransac_reproj_threshold,
|
436 |
+
ransac_confidence,
|
437 |
+
ransac_max_iter,
|
438 |
+
geometry_type,
|
439 |
+
)
|
440 |
+
else:
|
441 |
+
raise NotImplementedError
|
442 |
+
|
443 |
+
|
444 |
+
def filter_matches(
|
445 |
+
pred: Dict[str, Any],
|
446 |
+
ransac_method: str = DEFAULT_RANSAC_METHOD,
|
447 |
+
ransac_reproj_threshold: float = DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
448 |
+
ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
|
449 |
+
ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
|
450 |
+
ransac_estimator: str = None,
|
451 |
+
):
|
452 |
+
"""
|
453 |
+
Filter matches using RANSAC. If keypoints are available, filter by keypoints.
|
454 |
+
If lines are available, filter by lines. If both keypoints and lines are
|
455 |
+
available, filter by keypoints.
|
456 |
+
|
457 |
+
Args:
|
458 |
+
pred (Dict[str, Any]): dict of matches, including original keypoints.
|
459 |
+
ransac_method (str, optional): RANSAC method. Defaults to DEFAULT_RANSAC_METHOD.
|
460 |
+
ransac_reproj_threshold (float, optional): RANSAC reprojection threshold. Defaults to DEFAULT_RANSAC_REPROJ_THRESHOLD.
|
461 |
+
ransac_confidence (float, optional): RANSAC confidence. Defaults to DEFAULT_RANSAC_CONFIDENCE.
|
462 |
+
ransac_max_iter (int, optional): RANSAC maximum iterations. Defaults to DEFAULT_RANSAC_MAX_ITER.
|
463 |
+
|
464 |
+
Returns:
|
465 |
+
Dict[str, Any]: filtered matches.
|
466 |
+
"""
|
467 |
+
mkpts0: Optional[np.ndarray] = None
|
468 |
+
mkpts1: Optional[np.ndarray] = None
|
469 |
+
feature_type: Optional[str] = None
|
470 |
+
if "mkeypoints0_orig" in pred.keys() and "mkeypoints1_orig" in pred.keys():
|
471 |
+
mkpts0 = pred["mkeypoints0_orig"]
|
472 |
+
mkpts1 = pred["mkeypoints1_orig"]
|
473 |
+
feature_type = "KEYPOINT"
|
474 |
+
elif (
|
475 |
+
"line_keypoints0_orig" in pred.keys() and "line_keypoints1_orig" in pred.keys()
|
476 |
+
):
|
477 |
+
mkpts0 = pred["line_keypoints0_orig"]
|
478 |
+
mkpts1 = pred["line_keypoints1_orig"]
|
479 |
+
feature_type = "LINE"
|
480 |
+
else:
|
481 |
+
return set_null_pred(feature_type, pred)
|
482 |
+
if mkpts0 is None or mkpts0 is None:
|
483 |
+
return set_null_pred(feature_type, pred)
|
484 |
+
if ransac_method not in ransac_zoo.keys():
|
485 |
+
ransac_method = DEFAULT_RANSAC_METHOD
|
486 |
+
|
487 |
+
if len(mkpts0) < DEFAULT_MIN_NUM_MATCHES:
|
488 |
+
return set_null_pred(feature_type, pred)
|
489 |
+
|
490 |
+
geom_info = compute_geometry(
|
491 |
+
pred,
|
492 |
+
ransac_method=ransac_method,
|
493 |
+
ransac_reproj_threshold=ransac_reproj_threshold,
|
494 |
+
ransac_confidence=ransac_confidence,
|
495 |
+
ransac_max_iter=ransac_max_iter,
|
496 |
+
)
|
497 |
+
|
498 |
+
if "Homography" in geom_info.keys():
|
499 |
+
mask = geom_info["mask_h"]
|
500 |
+
if feature_type == "KEYPOINT":
|
501 |
+
pred["mmkeypoints0_orig"] = mkpts0[mask]
|
502 |
+
pred["mmkeypoints1_orig"] = mkpts1[mask]
|
503 |
+
pred["mmconf"] = pred["mconf"][mask]
|
504 |
+
elif feature_type == "LINE":
|
505 |
+
pred["mline_keypoints0_orig"] = mkpts0[mask]
|
506 |
+
pred["mline_keypoints1_orig"] = mkpts1[mask]
|
507 |
+
pred["H"] = np.array(geom_info["Homography"])
|
508 |
+
else:
|
509 |
+
set_null_pred(feature_type, pred)
|
510 |
+
# do not show mask
|
511 |
+
geom_info.pop("mask_h", None)
|
512 |
+
geom_info.pop("mask_f", None)
|
513 |
+
pred["geom_info"] = geom_info
|
514 |
+
return pred
|
515 |
+
|
516 |
+
|
517 |
+
def compute_geometry(
|
518 |
+
pred: Dict[str, Any],
|
519 |
+
ransac_method: str = DEFAULT_RANSAC_METHOD,
|
520 |
+
ransac_reproj_threshold: float = DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
521 |
+
ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
|
522 |
+
ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
|
523 |
+
) -> Dict[str, List[float]]:
|
524 |
+
"""
|
525 |
+
Compute geometric information of matches, including Fundamental matrix,
|
526 |
+
Homography matrix, and rectification matrices (if available).
|
527 |
+
|
528 |
+
Args:
|
529 |
+
pred (Dict[str, Any]): dict of matches, including original keypoints.
|
530 |
+
ransac_method (str, optional): RANSAC method. Defaults to DEFAULT_RANSAC_METHOD.
|
531 |
+
ransac_reproj_threshold (float, optional): RANSAC reprojection threshold. Defaults to DEFAULT_RANSAC_REPROJ_THRESHOLD.
|
532 |
+
ransac_confidence (float, optional): RANSAC confidence. Defaults to DEFAULT_RANSAC_CONFIDENCE.
|
533 |
+
ransac_max_iter (int, optional): RANSAC maximum iterations. Defaults to DEFAULT_RANSAC_MAX_ITER.
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
Dict[str, List[float]]: geometric information in form of a dict.
|
537 |
+
"""
|
538 |
+
mkpts0: Optional[np.ndarray] = None
|
539 |
+
mkpts1: Optional[np.ndarray] = None
|
540 |
+
|
541 |
+
if "mkeypoints0_orig" in pred.keys() and "mkeypoints1_orig" in pred.keys():
|
542 |
+
mkpts0 = pred["mkeypoints0_orig"]
|
543 |
+
mkpts1 = pred["mkeypoints1_orig"]
|
544 |
+
elif (
|
545 |
+
"line_keypoints0_orig" in pred.keys() and "line_keypoints1_orig" in pred.keys()
|
546 |
+
):
|
547 |
+
mkpts0 = pred["line_keypoints0_orig"]
|
548 |
+
mkpts1 = pred["line_keypoints1_orig"]
|
549 |
+
|
550 |
+
if mkpts0 is not None and mkpts1 is not None:
|
551 |
+
if len(mkpts0) < 2 * DEFAULT_MIN_NUM_MATCHES:
|
552 |
+
return {}
|
553 |
+
geo_info: Dict[str, List[float]] = {}
|
554 |
+
|
555 |
+
F, mask_f = proc_ransac_matches(
|
556 |
+
mkpts0,
|
557 |
+
mkpts1,
|
558 |
+
ransac_method,
|
559 |
+
ransac_reproj_threshold,
|
560 |
+
ransac_confidence,
|
561 |
+
ransac_max_iter,
|
562 |
+
geometry_type="Fundamental",
|
563 |
+
)
|
564 |
+
|
565 |
+
if F is not None:
|
566 |
+
geo_info["Fundamental"] = F.tolist()
|
567 |
+
geo_info["mask_f"] = mask_f
|
568 |
+
H, mask_h = proc_ransac_matches(
|
569 |
+
mkpts0,
|
570 |
+
mkpts1,
|
571 |
+
ransac_method,
|
572 |
+
ransac_reproj_threshold,
|
573 |
+
ransac_confidence,
|
574 |
+
ransac_max_iter,
|
575 |
+
geometry_type="Homography",
|
576 |
+
)
|
577 |
+
|
578 |
+
h0, w0, _ = pred["image0_orig"].shape
|
579 |
+
if H is not None:
|
580 |
+
geo_info["Homography"] = H.tolist()
|
581 |
+
geo_info["mask_h"] = mask_h
|
582 |
+
try:
|
583 |
+
_, H1, H2 = cv2.stereoRectifyUncalibrated(
|
584 |
+
mkpts0.reshape(-1, 2),
|
585 |
+
mkpts1.reshape(-1, 2),
|
586 |
+
F,
|
587 |
+
imgSize=(w0, h0),
|
588 |
+
)
|
589 |
+
geo_info["H1"] = H1.tolist()
|
590 |
+
geo_info["H2"] = H2.tolist()
|
591 |
+
except cv2.error as e:
|
592 |
+
logger.error(f"StereoRectifyUncalibrated failed, skip! error: {e}")
|
593 |
+
return geo_info
|
594 |
+
else:
|
595 |
+
return {}
|
596 |
+
|
597 |
+
|
598 |
+
def wrap_images(
|
599 |
+
img0: np.ndarray,
|
600 |
+
img1: np.ndarray,
|
601 |
+
geo_info: Optional[Dict[str, List[float]]],
|
602 |
+
geom_type: str,
|
603 |
+
) -> Tuple[Optional[str], Optional[Dict[str, List[float]]]]:
|
604 |
+
"""
|
605 |
+
Wraps the images based on the geometric transformation used to align them.
|
606 |
+
|
607 |
+
Args:
|
608 |
+
img0: numpy array representing the first image.
|
609 |
+
img1: numpy array representing the second image.
|
610 |
+
geo_info: dictionary containing the geometric transformation information.
|
611 |
+
geom_type: type of geometric transformation used to align the images.
|
612 |
+
|
613 |
+
Returns:
|
614 |
+
A tuple containing a base64 encoded image string and a dictionary with the transformation matrix.
|
615 |
+
"""
|
616 |
+
h0, w0, _ = img0.shape
|
617 |
+
h1, w1, _ = img1.shape
|
618 |
+
if geo_info is not None and len(geo_info) != 0:
|
619 |
+
rectified_image0 = img0
|
620 |
+
rectified_image1 = None
|
621 |
+
if "Homography" not in geo_info:
|
622 |
+
logger.warning(f"{geom_type} not exist, maybe too less matches")
|
623 |
+
return None, None
|
624 |
+
|
625 |
+
H = np.array(geo_info["Homography"])
|
626 |
+
|
627 |
+
title: List[str] = []
|
628 |
+
if geom_type == "Homography":
|
629 |
+
H_inv = np.linalg.inv(H)
|
630 |
+
rectified_image1 = cv2.warpPerspective(img1, H_inv, (w0, h0))
|
631 |
+
title = ["Image 0", "Image 1 - warped"]
|
632 |
+
elif geom_type == "Fundamental":
|
633 |
+
if geom_type not in geo_info:
|
634 |
+
logger.warning(f"{geom_type} not exist, maybe too less matches")
|
635 |
+
return None, None
|
636 |
+
else:
|
637 |
+
H1, H2 = np.array(geo_info["H1"]), np.array(geo_info["H2"])
|
638 |
+
rectified_image0 = cv2.warpPerspective(img0, H1, (w0, h0))
|
639 |
+
rectified_image1 = cv2.warpPerspective(img1, H2, (w1, h1))
|
640 |
+
title = ["Image 0 - warped", "Image 1 - warped"]
|
641 |
+
else:
|
642 |
+
print("Error: Unknown geometry type")
|
643 |
+
fig = plot_images(
|
644 |
+
[rectified_image0.squeeze(), rectified_image1.squeeze()],
|
645 |
+
title,
|
646 |
+
dpi=300,
|
647 |
+
)
|
648 |
+
return fig2im(fig), rectified_image1
|
649 |
+
else:
|
650 |
+
return None, None
|
651 |
+
|
652 |
+
|
653 |
+
def generate_warp_images(
|
654 |
+
input_image0: np.ndarray,
|
655 |
+
input_image1: np.ndarray,
|
656 |
+
matches_info: Dict[str, Any],
|
657 |
+
choice: str,
|
658 |
+
) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
|
659 |
+
"""
|
660 |
+
Changes the estimate of the geometric transformation used to align the images.
|
661 |
+
|
662 |
+
Args:
|
663 |
+
input_image0: First input image.
|
664 |
+
input_image1: Second input image.
|
665 |
+
matches_info: Dictionary containing information about the matches.
|
666 |
+
choice: Type of geometric transformation to use ('Homography' or 'Fundamental') or 'No' to disable.
|
667 |
+
|
668 |
+
Returns:
|
669 |
+
A tuple containing the updated images and the warpped images.
|
670 |
+
"""
|
671 |
+
if (
|
672 |
+
matches_info is None
|
673 |
+
or len(matches_info) < 1
|
674 |
+
or "geom_info" not in matches_info.keys()
|
675 |
+
):
|
676 |
+
return None, None
|
677 |
+
geom_info = matches_info["geom_info"]
|
678 |
+
warped_image = None
|
679 |
+
if choice != "No":
|
680 |
+
wrapped_image_pair, warped_image = wrap_images(
|
681 |
+
input_image0, input_image1, geom_info, choice
|
682 |
+
)
|
683 |
+
return wrapped_image_pair, warped_image
|
684 |
+
else:
|
685 |
+
return None, None
|
686 |
+
|
687 |
+
|
688 |
+
def send_to_match(state_cache: Dict[str, Any]):
|
689 |
+
"""
|
690 |
+
Send the state cache to the match function.
|
691 |
+
|
692 |
+
Args:
|
693 |
+
state_cache (Dict[str, Any]): Current state of the app.
|
694 |
+
|
695 |
+
Returns:
|
696 |
+
None
|
697 |
+
"""
|
698 |
+
if state_cache:
|
699 |
+
return (
|
700 |
+
state_cache["image0_orig"],
|
701 |
+
state_cache["wrapped_image"],
|
702 |
+
)
|
703 |
+
else:
|
704 |
+
return None, None
|
705 |
+
|
706 |
+
|
707 |
+
def run_ransac(
|
708 |
+
state_cache: Dict[str, Any],
|
709 |
+
choice_geometry_type: str,
|
710 |
+
ransac_method: str = DEFAULT_RANSAC_METHOD,
|
711 |
+
ransac_reproj_threshold: int = DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
712 |
+
ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
|
713 |
+
ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
|
714 |
+
) -> Tuple[Optional[np.ndarray], Optional[Dict[str, int]]]:
|
715 |
+
"""
|
716 |
+
Run RANSAC matches and return the output images and the number of matches.
|
717 |
+
|
718 |
+
Args:
|
719 |
+
state_cache (Dict[str, Any]): Current state of the app, including the matches.
|
720 |
+
ransac_method (str, optional): RANSAC method. Defaults to DEFAULT_RANSAC_METHOD.
|
721 |
+
ransac_reproj_threshold (int, optional): RANSAC reprojection threshold. Defaults to DEFAULT_RANSAC_REPROJ_THRESHOLD.
|
722 |
+
ransac_confidence (float, optional): RANSAC confidence. Defaults to DEFAULT_RANSAC_CONFIDENCE.
|
723 |
+
ransac_max_iter (int, optional): RANSAC maximum iterations. Defaults to DEFAULT_RANSAC_MAX_ITER.
|
724 |
+
|
725 |
+
Returns:
|
726 |
+
Tuple[Optional[np.ndarray], Optional[Dict[str, int]]]: Tuple containing the output images and the number of matches.
|
727 |
+
"""
|
728 |
+
if not state_cache:
|
729 |
+
logger.info("Run Match first before Rerun RANSAC")
|
730 |
+
gr.Warning("Run Match first before Rerun RANSAC")
|
731 |
+
return None, None
|
732 |
+
t1 = time.time()
|
733 |
+
logger.info(
|
734 |
+
f"Run RANSAC matches using: {ransac_method} with threshold: {ransac_reproj_threshold}"
|
735 |
+
)
|
736 |
+
logger.info(
|
737 |
+
f"Run RANSAC matches using: {ransac_confidence} with iter: {ransac_max_iter}"
|
738 |
+
)
|
739 |
+
# if enable_ransac:
|
740 |
+
filter_matches(
|
741 |
+
state_cache,
|
742 |
+
ransac_method=ransac_method,
|
743 |
+
ransac_reproj_threshold=ransac_reproj_threshold,
|
744 |
+
ransac_confidence=ransac_confidence,
|
745 |
+
ransac_max_iter=ransac_max_iter,
|
746 |
+
)
|
747 |
+
logger.info(f"RANSAC matches done using: {time.time()-t1:.3f}s")
|
748 |
+
t1 = time.time()
|
749 |
+
|
750 |
+
# plot images with ransac matches
|
751 |
+
titles = [
|
752 |
+
"Image 0 - Ransac matched keypoints",
|
753 |
+
"Image 1 - Ransac matched keypoints",
|
754 |
+
]
|
755 |
+
output_matches_ransac, num_matches_ransac = display_matches(
|
756 |
+
state_cache, titles=titles, tag="KPTS_RANSAC"
|
757 |
+
)
|
758 |
+
logger.info(f"Display matches done using: {time.time()-t1:.3f}s")
|
759 |
+
t1 = time.time()
|
760 |
+
|
761 |
+
# compute warp images
|
762 |
+
output_wrapped, warped_image = generate_warp_images(
|
763 |
+
state_cache["image0_orig"],
|
764 |
+
state_cache["image1_orig"],
|
765 |
+
state_cache,
|
766 |
+
choice_geometry_type,
|
767 |
+
)
|
768 |
+
plt.close("all")
|
769 |
+
|
770 |
+
num_matches_raw = state_cache["num_matches_raw"]
|
771 |
+
state_cache["wrapped_image"] = warped_image
|
772 |
+
|
773 |
+
# tmp_state_cache = tempfile.NamedTemporaryFile(suffix='.pkl', delete=False)
|
774 |
+
tmp_state_cache = "output.pkl"
|
775 |
+
with open(tmp_state_cache, "wb") as f:
|
776 |
+
pickle.dump(state_cache, f)
|
777 |
+
|
778 |
+
logger.info("Dump results done!")
|
779 |
+
|
780 |
+
return (
|
781 |
+
output_matches_ransac,
|
782 |
+
{
|
783 |
+
"num_matches_raw": num_matches_raw,
|
784 |
+
"num_matches_ransac": num_matches_ransac,
|
785 |
+
},
|
786 |
+
output_wrapped,
|
787 |
+
tmp_state_cache,
|
788 |
+
)
|
789 |
+
|
790 |
+
|
791 |
+
def generate_fake_outputs(
|
792 |
+
output_keypoints,
|
793 |
+
output_matches_raw,
|
794 |
+
output_matches_ransac,
|
795 |
+
match_conf,
|
796 |
+
extract_conf,
|
797 |
+
pred,
|
798 |
+
):
|
799 |
+
return (
|
800 |
+
output_keypoints,
|
801 |
+
output_matches_raw,
|
802 |
+
output_matches_ransac,
|
803 |
+
{},
|
804 |
+
{
|
805 |
+
"match_conf": match_conf,
|
806 |
+
"extractor_conf": extract_conf,
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"geom_info": pred.get("geom_info", {}),
|
810 |
+
},
|
811 |
+
None,
|
812 |
+
None,
|
813 |
+
None,
|
814 |
+
)
|
815 |
+
|
816 |
+
|
817 |
+
def run_matching(
|
818 |
+
image0: np.ndarray,
|
819 |
+
image1: np.ndarray,
|
820 |
+
match_threshold: float,
|
821 |
+
extract_max_keypoints: int,
|
822 |
+
keypoint_threshold: float,
|
823 |
+
key: str,
|
824 |
+
ransac_method: str = DEFAULT_RANSAC_METHOD,
|
825 |
+
ransac_reproj_threshold: int = DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
826 |
+
ransac_confidence: float = DEFAULT_RANSAC_CONFIDENCE,
|
827 |
+
ransac_max_iter: int = DEFAULT_RANSAC_MAX_ITER,
|
828 |
+
choice_geometry_type: str = DEFAULT_SETTING_GEOMETRY,
|
829 |
+
matcher_zoo: Dict[str, Any] = None,
|
830 |
+
force_resize: bool = False,
|
831 |
+
image_width: int = 640,
|
832 |
+
image_height: int = 480,
|
833 |
+
use_cached_model: bool = True,
|
834 |
+
) -> Tuple[
|
835 |
+
np.ndarray,
|
836 |
+
np.ndarray,
|
837 |
+
np.ndarray,
|
838 |
+
Dict[str, int],
|
839 |
+
Dict[str, Dict[str, Any]],
|
840 |
+
Dict[str, Dict[str, float]],
|
841 |
+
np.ndarray,
|
842 |
+
]:
|
843 |
+
"""Match two images using the given parameters.
|
844 |
+
|
845 |
+
Args:
|
846 |
+
image0 (np.ndarray): RGB image 0.
|
847 |
+
image1 (np.ndarray): RGB image 1.
|
848 |
+
match_threshold (float): match threshold.
|
849 |
+
extract_max_keypoints (int): number of keypoints to extract.
|
850 |
+
keypoint_threshold (float): keypoint threshold.
|
851 |
+
key (str): key of the model to use.
|
852 |
+
ransac_method (str, optional): RANSAC method to use.
|
853 |
+
ransac_reproj_threshold (int, optional): RANSAC reprojection threshold.
|
854 |
+
ransac_confidence (float, optional): RANSAC confidence level.
|
855 |
+
ransac_max_iter (int, optional): RANSAC maximum number of iterations.
|
856 |
+
choice_geometry_type (str, optional): setting of geometry estimation.
|
857 |
+
matcher_zoo (Dict[str, Any], optional): matcher zoo. Defaults to None.
|
858 |
+
force_resize (bool, optional): force resize. Defaults to False.
|
859 |
+
image_width (int, optional): image width. Defaults to 640.
|
860 |
+
image_height (int, optional): image height. Defaults to 480.
|
861 |
+
use_cached_model (bool, optional): use cached model. Defaults to False.
|
862 |
+
|
863 |
+
Returns:
|
864 |
+
tuple:
|
865 |
+
- output_keypoints (np.ndarray): image with keypoints.
|
866 |
+
- output_matches_raw (np.ndarray): image with raw matches.
|
867 |
+
- output_matches_ransac (np.ndarray): image with RANSAC matches.
|
868 |
+
- num_matches (Dict[str, int]): number of raw and RANSAC matches.
|
869 |
+
- configs (Dict[str, Dict[str, Any]]): match and feature extraction configs.
|
870 |
+
- geom_info (Dict[str, Dict[str, float]]): geometry information.
|
871 |
+
- output_wrapped (np.ndarray): wrapped images.
|
872 |
+
"""
|
873 |
+
# image0 and image1 is RGB mode
|
874 |
+
if image0 is None or image1 is None:
|
875 |
+
logger.error(
|
876 |
+
"Error: No images found! Please upload two images or select an example."
|
877 |
+
)
|
878 |
+
raise gr.Error(
|
879 |
+
"Error: No images found! Please upload two images or select an example."
|
880 |
+
)
|
881 |
+
# init output
|
882 |
+
output_keypoints = None
|
883 |
+
output_matches_raw = None
|
884 |
+
output_matches_ransac = None
|
885 |
+
|
886 |
+
t0 = time.time()
|
887 |
+
model = matcher_zoo[key]
|
888 |
+
match_conf = model["matcher"]
|
889 |
+
# update match config
|
890 |
+
match_conf["model"]["match_threshold"] = match_threshold
|
891 |
+
match_conf["model"]["max_keypoints"] = extract_max_keypoints
|
892 |
+
cache_key = "{}_{}".format(key, match_conf["model"]["name"])
|
893 |
+
|
894 |
+
efficiency = model["info"].get("efficiency", "high")
|
895 |
+
if efficiency == "low":
|
896 |
+
gr.Warning(
|
897 |
+
"Matcher {} is time-consuming, please wait for a while".format(
|
898 |
+
model["info"].get("name", "unknown")
|
899 |
+
)
|
900 |
+
)
|
901 |
+
|
902 |
+
if use_cached_model:
|
903 |
+
# because of the model cache, we need to update the config
|
904 |
+
matcher = model_cache.load_model(cache_key, get_model, match_conf)
|
905 |
+
matcher.conf["max_keypoints"] = extract_max_keypoints
|
906 |
+
matcher.conf["match_threshold"] = match_threshold
|
907 |
+
logger.info(f"Loaded cached model {cache_key}")
|
908 |
+
else:
|
909 |
+
matcher = get_model(match_conf)
|
910 |
+
logger.info(f"Loading model using: {time.time()-t0:.3f}s")
|
911 |
+
t1 = time.time()
|
912 |
+
yield generate_fake_outputs(
|
913 |
+
output_keypoints, output_matches_raw, output_matches_ransac, match_conf, {}, {}
|
914 |
+
)
|
915 |
+
|
916 |
+
if model["dense"]:
|
917 |
+
if not match_conf["preprocessing"].get("force_resize", False):
|
918 |
+
match_conf["preprocessing"]["force_resize"] = force_resize
|
919 |
+
else:
|
920 |
+
logger.info("preprocessing is already resized")
|
921 |
+
if force_resize:
|
922 |
+
match_conf["preprocessing"]["height"] = image_height
|
923 |
+
match_conf["preprocessing"]["width"] = image_width
|
924 |
+
logger.info(f"Force resize to {image_width}x{image_height}")
|
925 |
+
|
926 |
+
pred = match_dense.match_images(
|
927 |
+
matcher, image0, image1, match_conf["preprocessing"], device=DEVICE
|
928 |
+
)
|
929 |
+
del matcher
|
930 |
+
extract_conf = None
|
931 |
+
else:
|
932 |
+
extract_conf = model["feature"]
|
933 |
+
# update extract config
|
934 |
+
extract_conf["model"]["max_keypoints"] = extract_max_keypoints
|
935 |
+
extract_conf["model"]["keypoint_threshold"] = keypoint_threshold
|
936 |
+
cache_key = "{}_{}".format(key, extract_conf["model"]["name"])
|
937 |
+
|
938 |
+
if use_cached_model:
|
939 |
+
extractor = model_cache.load_model(
|
940 |
+
cache_key, get_feature_model, extract_conf
|
941 |
+
)
|
942 |
+
# because of the model cache, we need to update the config
|
943 |
+
extractor.conf["max_keypoints"] = extract_max_keypoints
|
944 |
+
extractor.conf["keypoint_threshold"] = keypoint_threshold
|
945 |
+
logger.info(f"Loaded cached model {cache_key}")
|
946 |
+
else:
|
947 |
+
extractor = get_feature_model(extract_conf)
|
948 |
+
|
949 |
+
if not extract_conf["preprocessing"].get("force_resize", False):
|
950 |
+
extract_conf["preprocessing"]["force_resize"] = force_resize
|
951 |
+
else:
|
952 |
+
logger.info("preprocessing is already resized")
|
953 |
+
if force_resize:
|
954 |
+
extract_conf["preprocessing"]["height"] = image_height
|
955 |
+
extract_conf["preprocessing"]["width"] = image_width
|
956 |
+
logger.info(f"Force resize to {image_width}x{image_height}")
|
957 |
+
|
958 |
+
pred0 = extract_features.extract(
|
959 |
+
extractor, image0, extract_conf["preprocessing"]
|
960 |
+
)
|
961 |
+
pred1 = extract_features.extract(
|
962 |
+
extractor, image1, extract_conf["preprocessing"]
|
963 |
+
)
|
964 |
+
pred = match_features.match_images(matcher, pred0, pred1)
|
965 |
+
del extractor
|
966 |
+
# gr.Info(
|
967 |
+
# f"Matching images done using: {time.time()-t1:.3f}s",
|
968 |
+
# )
|
969 |
+
logger.info(f"Matching images done using: {time.time()-t1:.3f}s")
|
970 |
+
t1 = time.time()
|
971 |
+
|
972 |
+
# plot images with keypoints
|
973 |
+
titles = [
|
974 |
+
"Image 0 - Keypoints",
|
975 |
+
"Image 1 - Keypoints",
|
976 |
+
]
|
977 |
+
output_keypoints = display_keypoints(pred, titles=titles)
|
978 |
+
yield generate_fake_outputs(
|
979 |
+
output_keypoints,
|
980 |
+
output_matches_raw,
|
981 |
+
output_matches_ransac,
|
982 |
+
match_conf,
|
983 |
+
extract_conf,
|
984 |
+
pred,
|
985 |
+
)
|
986 |
+
|
987 |
+
# plot images with raw matches
|
988 |
+
titles = [
|
989 |
+
"Image 0 - Raw matched keypoints",
|
990 |
+
"Image 1 - Raw matched keypoints",
|
991 |
+
]
|
992 |
+
output_matches_raw, num_matches_raw = display_matches(pred, titles=titles)
|
993 |
+
yield generate_fake_outputs(
|
994 |
+
output_keypoints,
|
995 |
+
output_matches_raw,
|
996 |
+
output_matches_ransac,
|
997 |
+
match_conf,
|
998 |
+
extract_conf,
|
999 |
+
pred,
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
# if enable_ransac:
|
1003 |
+
filter_matches(
|
1004 |
+
pred,
|
1005 |
+
ransac_method=ransac_method,
|
1006 |
+
ransac_reproj_threshold=ransac_reproj_threshold,
|
1007 |
+
ransac_confidence=ransac_confidence,
|
1008 |
+
ransac_max_iter=ransac_max_iter,
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
# gr.Info(f"RANSAC matches done using: {time.time()-t1:.3f}s")
|
1012 |
+
logger.info(f"RANSAC matches done using: {time.time()-t1:.3f}s")
|
1013 |
+
t1 = time.time()
|
1014 |
+
|
1015 |
+
# plot images with ransac matches
|
1016 |
+
titles = [
|
1017 |
+
"Image 0 - Ransac matched keypoints",
|
1018 |
+
"Image 1 - Ransac matched keypoints",
|
1019 |
+
]
|
1020 |
+
output_matches_ransac, num_matches_ransac = display_matches(
|
1021 |
+
pred, titles=titles, tag="KPTS_RANSAC"
|
1022 |
+
)
|
1023 |
+
yield generate_fake_outputs(
|
1024 |
+
output_keypoints,
|
1025 |
+
output_matches_raw,
|
1026 |
+
output_matches_ransac,
|
1027 |
+
match_conf,
|
1028 |
+
extract_conf,
|
1029 |
+
pred,
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
# gr.Info(f"Display matches done using: {time.time()-t1:.3f}s")
|
1033 |
+
logger.info(f"Display matches done using: {time.time()-t1:.3f}s")
|
1034 |
+
t1 = time.time()
|
1035 |
+
# plot wrapped images
|
1036 |
+
output_wrapped, warped_image = generate_warp_images(
|
1037 |
+
pred["image0_orig"],
|
1038 |
+
pred["image1_orig"],
|
1039 |
+
pred,
|
1040 |
+
choice_geometry_type,
|
1041 |
+
)
|
1042 |
+
plt.close("all")
|
1043 |
+
# gr.Info(f"In summary, total time: {time.time()-t0:.3f}s")
|
1044 |
+
logger.info(f"TOTAL time: {time.time()-t0:.3f}s")
|
1045 |
+
|
1046 |
+
state_cache = pred
|
1047 |
+
state_cache["num_matches_raw"] = num_matches_raw
|
1048 |
+
state_cache["num_matches_ransac"] = num_matches_ransac
|
1049 |
+
state_cache["wrapped_image"] = warped_image
|
1050 |
+
|
1051 |
+
# tmp_state_cache = tempfile.NamedTemporaryFile(suffix='.pkl', delete=False)
|
1052 |
+
tmp_state_cache = "output.pkl"
|
1053 |
+
with open(tmp_state_cache, "wb") as f:
|
1054 |
+
pickle.dump(state_cache, f)
|
1055 |
+
logger.info("Dump results done!")
|
1056 |
+
|
1057 |
+
yield (
|
1058 |
+
output_keypoints,
|
1059 |
+
output_matches_raw,
|
1060 |
+
output_matches_ransac,
|
1061 |
+
{
|
1062 |
+
"num_raw_matches": num_matches_raw,
|
1063 |
+
"num_ransac_matches": num_matches_ransac,
|
1064 |
+
},
|
1065 |
+
{
|
1066 |
+
"match_conf": match_conf,
|
1067 |
+
"extractor_conf": extract_conf,
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"geom_info": pred.get("geom_info", {}),
|
1071 |
+
},
|
1072 |
+
output_wrapped,
|
1073 |
+
state_cache,
|
1074 |
+
tmp_state_cache,
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
|
1078 |
+
# @ref: https://docs.opencv.org/4.x/d0/d74/md__build_4_x-contrib_docs-lin64_opencv_doc_tutorials_calib3d_usac.html
|
1079 |
+
# AND: https://opencv.org/blog/2021/06/09/evaluating-opencvs-new-ransacs
|
1080 |
+
ransac_zoo = {
|
1081 |
+
"POSELIB": "LO-RANSAC",
|
1082 |
+
"CV2_RANSAC": cv2.RANSAC,
|
1083 |
+
"CV2_USAC_MAGSAC": cv2.USAC_MAGSAC,
|
1084 |
+
"CV2_USAC_DEFAULT": cv2.USAC_DEFAULT,
|
1085 |
+
"CV2_USAC_FM_8PTS": cv2.USAC_FM_8PTS,
|
1086 |
+
"CV2_USAC_PROSAC": cv2.USAC_PROSAC,
|
1087 |
+
"CV2_USAC_FAST": cv2.USAC_FAST,
|
1088 |
+
"CV2_USAC_ACCURATE": cv2.USAC_ACCURATE,
|
1089 |
+
"CV2_USAC_PARALLEL": cv2.USAC_PARALLEL,
|
1090 |
+
}
|
1091 |
+
|
1092 |
+
|
1093 |
+
def rotate_image(input_path, degrees, output_path):
|
1094 |
+
img = Image.open(input_path)
|
1095 |
+
img_rotated = img.rotate(-degrees)
|
1096 |
+
img_rotated.save(output_path)
|
1097 |
+
|
1098 |
+
|
1099 |
+
def scale_image(input_path, scale_factor, output_path):
|
1100 |
+
img = Image.open(input_path)
|
1101 |
+
width, height = img.size
|
1102 |
+
new_width = int(width * scale_factor)
|
1103 |
+
new_height = int(height * scale_factor)
|
1104 |
+
new_img = Image.new("RGB", (width, height), (0, 0, 0))
|
1105 |
+
img_resized = img.resize((new_width, new_height))
|
1106 |
+
position = ((width - new_width) // 2, (height - new_height) // 2)
|
1107 |
+
new_img.paste(img_resized, position)
|
1108 |
+
new_img.save(output_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
imcui/ui/viz.py
CHANGED
@@ -1,481 +1,481 @@
|
|
1 |
-
import typing
|
2 |
-
from pathlib import Path
|
3 |
-
from typing import Dict, List, Optional, Tuple, Union
|
4 |
-
|
5 |
-
import cv2
|
6 |
-
import matplotlib
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import numpy as np
|
9 |
-
import seaborn as sns
|
10 |
-
|
11 |
-
from ..hloc.utils.viz import add_text, plot_keypoints
|
12 |
-
|
13 |
-
np.random.seed(1995)
|
14 |
-
color_map = np.arange(100)
|
15 |
-
np.random.shuffle(color_map)
|
16 |
-
|
17 |
-
|
18 |
-
def plot_images(
|
19 |
-
imgs: List[np.ndarray],
|
20 |
-
titles: Optional[List[str]] = None,
|
21 |
-
cmaps: Union[str, List[str]] = "gray",
|
22 |
-
dpi: int = 100,
|
23 |
-
size: Optional[int] = 5,
|
24 |
-
pad: float = 0.5,
|
25 |
-
) -> plt.Figure:
|
26 |
-
"""Plot a set of images horizontally.
|
27 |
-
Args:
|
28 |
-
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
|
29 |
-
titles: a list of strings, as titles for each image.
|
30 |
-
cmaps: colormaps for monochrome images. If a single string is given,
|
31 |
-
it is used for all images.
|
32 |
-
dpi: DPI of the figure.
|
33 |
-
size: figure size in inches (width). If not provided, the figure
|
34 |
-
size is determined automatically.
|
35 |
-
pad: padding between subplots, in inches.
|
36 |
-
Returns:
|
37 |
-
The created figure.
|
38 |
-
"""
|
39 |
-
n = len(imgs)
|
40 |
-
if not isinstance(cmaps, list):
|
41 |
-
cmaps = [cmaps] * n
|
42 |
-
figsize = (size * n, size * 6 / 5) if size is not None else None
|
43 |
-
fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
|
44 |
-
|
45 |
-
if n == 1:
|
46 |
-
ax = [ax]
|
47 |
-
for i in range(n):
|
48 |
-
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
|
49 |
-
ax[i].get_yaxis().set_ticks([])
|
50 |
-
ax[i].get_xaxis().set_ticks([])
|
51 |
-
ax[i].set_axis_off()
|
52 |
-
for spine in ax[i].spines.values(): # remove frame
|
53 |
-
spine.set_visible(False)
|
54 |
-
if titles:
|
55 |
-
ax[i].set_title(titles[i])
|
56 |
-
fig.tight_layout(pad=pad)
|
57 |
-
return fig
|
58 |
-
|
59 |
-
|
60 |
-
def plot_color_line_matches(
|
61 |
-
lines: List[np.ndarray],
|
62 |
-
correct_matches: Optional[np.ndarray] = None,
|
63 |
-
lw: float = 2.0,
|
64 |
-
indices: Tuple[int, int] = (0, 1),
|
65 |
-
) -> matplotlib.figure.Figure:
|
66 |
-
"""Plot line matches for existing images with multiple colors.
|
67 |
-
|
68 |
-
Args:
|
69 |
-
lines: List of ndarrays of size (N, 2, 2) representing line segments.
|
70 |
-
correct_matches: Optional bool array of size (N,) indicating correct
|
71 |
-
matches. If not None, display wrong matches with a low alpha.
|
72 |
-
lw: Line width as float pixels.
|
73 |
-
indices: Indices of the images to draw the matches on.
|
74 |
-
|
75 |
-
Returns:
|
76 |
-
The modified matplotlib figure.
|
77 |
-
"""
|
78 |
-
n_lines = lines[0].shape[0]
|
79 |
-
colors = sns.color_palette("husl", n_colors=n_lines)
|
80 |
-
np.random.shuffle(colors)
|
81 |
-
alphas = np.ones(n_lines)
|
82 |
-
if correct_matches is not None:
|
83 |
-
alphas[~np.array(correct_matches)] = 0.2
|
84 |
-
|
85 |
-
fig = plt.gcf()
|
86 |
-
ax = typing.cast(List[matplotlib.axes.Axes], fig.axes)
|
87 |
-
assert len(ax) > max(indices)
|
88 |
-
axes = [ax[i] for i in indices]
|
89 |
-
fig.canvas.draw()
|
90 |
-
|
91 |
-
# Plot the lines
|
92 |
-
for a, l in zip(axes, lines): # noqa: E741
|
93 |
-
# Transform the points into the figure coordinate system
|
94 |
-
transFigure = fig.transFigure.inverted()
|
95 |
-
endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
|
96 |
-
endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
|
97 |
-
fig.lines += [
|
98 |
-
matplotlib.lines.Line2D(
|
99 |
-
(endpoint0[i, 0], endpoint1[i, 0]),
|
100 |
-
(endpoint0[i, 1], endpoint1[i, 1]),
|
101 |
-
zorder=1,
|
102 |
-
transform=fig.transFigure,
|
103 |
-
c=colors[i],
|
104 |
-
alpha=alphas[i],
|
105 |
-
linewidth=lw,
|
106 |
-
)
|
107 |
-
for i in range(n_lines)
|
108 |
-
]
|
109 |
-
|
110 |
-
return fig
|
111 |
-
|
112 |
-
|
113 |
-
def make_matching_figure(
|
114 |
-
img0: np.ndarray,
|
115 |
-
img1: np.ndarray,
|
116 |
-
mkpts0: np.ndarray,
|
117 |
-
mkpts1: np.ndarray,
|
118 |
-
color: np.ndarray,
|
119 |
-
titles: Optional[List[str]] = None,
|
120 |
-
kpts0: Optional[np.ndarray] = None,
|
121 |
-
kpts1: Optional[np.ndarray] = None,
|
122 |
-
text: List[str] = [],
|
123 |
-
dpi: int = 75,
|
124 |
-
path: Optional[Path] = None,
|
125 |
-
pad: float = 0.0,
|
126 |
-
) -> Optional[plt.Figure]:
|
127 |
-
"""Draw image pair with matches.
|
128 |
-
|
129 |
-
Args:
|
130 |
-
img0: image0 as HxWx3 numpy array.
|
131 |
-
img1: image1 as HxWx3 numpy array.
|
132 |
-
mkpts0: matched points in image0 as Nx2 numpy array.
|
133 |
-
mkpts1: matched points in image1 as Nx2 numpy array.
|
134 |
-
color: colors for the matches as Nx4 numpy array.
|
135 |
-
titles: titles for the two subplots.
|
136 |
-
kpts0: keypoints in image0 as Kx2 numpy array.
|
137 |
-
kpts1: keypoints in image1 as Kx2 numpy array.
|
138 |
-
text: list of strings to display in the top-left corner of the image.
|
139 |
-
dpi: dots per inch of the saved figure.
|
140 |
-
path: if not None, save the figure to this path.
|
141 |
-
pad: padding around the image as a fraction of the image size.
|
142 |
-
|
143 |
-
Returns:
|
144 |
-
The matplotlib Figure object if path is None.
|
145 |
-
"""
|
146 |
-
# draw image pair
|
147 |
-
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
|
148 |
-
axes[0].imshow(img0) # , cmap='gray')
|
149 |
-
axes[1].imshow(img1) # , cmap='gray')
|
150 |
-
for i in range(2): # clear all frames
|
151 |
-
axes[i].get_yaxis().set_ticks([])
|
152 |
-
axes[i].get_xaxis().set_ticks([])
|
153 |
-
for spine in axes[i].spines.values():
|
154 |
-
spine.set_visible(False)
|
155 |
-
if titles is not None:
|
156 |
-
axes[i].set_title(titles[i])
|
157 |
-
|
158 |
-
plt.tight_layout(pad=pad)
|
159 |
-
|
160 |
-
if kpts0 is not None:
|
161 |
-
assert kpts1 is not None
|
162 |
-
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c="w", s=5)
|
163 |
-
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c="w", s=5)
|
164 |
-
|
165 |
-
# draw matches
|
166 |
-
if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0 and mkpts0.shape == mkpts1.shape:
|
167 |
-
fig.canvas.draw()
|
168 |
-
transFigure = fig.transFigure.inverted()
|
169 |
-
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
|
170 |
-
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
|
171 |
-
fig.lines = [
|
172 |
-
matplotlib.lines.Line2D(
|
173 |
-
(fkpts0[i, 0], fkpts1[i, 0]),
|
174 |
-
(fkpts0[i, 1], fkpts1[i, 1]),
|
175 |
-
transform=fig.transFigure,
|
176 |
-
c=color[i],
|
177 |
-
linewidth=2,
|
178 |
-
)
|
179 |
-
for i in range(len(mkpts0))
|
180 |
-
]
|
181 |
-
|
182 |
-
# freeze the axes to prevent the transform to change
|
183 |
-
axes[0].autoscale(enable=False)
|
184 |
-
axes[1].autoscale(enable=False)
|
185 |
-
|
186 |
-
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color[..., :3], s=4)
|
187 |
-
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color[..., :3], s=4)
|
188 |
-
|
189 |
-
# put txts
|
190 |
-
txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
|
191 |
-
fig.text(
|
192 |
-
0.01,
|
193 |
-
0.99,
|
194 |
-
"\n".join(text),
|
195 |
-
transform=fig.axes[0].transAxes,
|
196 |
-
fontsize=15,
|
197 |
-
va="top",
|
198 |
-
ha="left",
|
199 |
-
color=txt_color,
|
200 |
-
)
|
201 |
-
|
202 |
-
# save or return figure
|
203 |
-
if path:
|
204 |
-
plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
|
205 |
-
plt.close()
|
206 |
-
else:
|
207 |
-
return fig
|
208 |
-
|
209 |
-
|
210 |
-
def error_colormap(err: np.ndarray, thr: float, alpha: float = 1.0) -> np.ndarray:
|
211 |
-
"""
|
212 |
-
Create a colormap based on the error values.
|
213 |
-
|
214 |
-
Args:
|
215 |
-
err: Error values as a numpy array of shape (N,).
|
216 |
-
thr: Threshold value for the error.
|
217 |
-
alpha: Alpha value for the colormap, between 0 and 1.
|
218 |
-
|
219 |
-
Returns:
|
220 |
-
Colormap as a numpy array of shape (N, 4) with values in [0, 1].
|
221 |
-
"""
|
222 |
-
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
|
223 |
-
x = 1 - np.clip(err / (thr * 2), 0, 1)
|
224 |
-
return np.clip(
|
225 |
-
np.stack([2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x) * alpha], -1),
|
226 |
-
0,
|
227 |
-
1,
|
228 |
-
)
|
229 |
-
|
230 |
-
|
231 |
-
def fig2im(fig: matplotlib.figure.Figure) -> np.ndarray:
|
232 |
-
"""
|
233 |
-
Convert a matplotlib figure to a numpy array with RGB values.
|
234 |
-
|
235 |
-
Args:
|
236 |
-
fig: A matplotlib figure.
|
237 |
-
|
238 |
-
Returns:
|
239 |
-
A numpy array with shape (height, width, 3) and dtype uint8 containing
|
240 |
-
the RGB values of the figure.
|
241 |
-
"""
|
242 |
-
fig.canvas.draw()
|
243 |
-
(width, height) = fig.canvas.get_width_height()
|
244 |
-
buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype="u1")
|
245 |
-
return buf_ndarray.reshape(height, width, 3)
|
246 |
-
|
247 |
-
|
248 |
-
def draw_matches_core(
|
249 |
-
mkpts0: List[np.ndarray],
|
250 |
-
mkpts1: List[np.ndarray],
|
251 |
-
img0: np.ndarray,
|
252 |
-
img1: np.ndarray,
|
253 |
-
conf: np.ndarray,
|
254 |
-
titles: Optional[List[str]] = None,
|
255 |
-
texts: Optional[List[str]] = None,
|
256 |
-
dpi: int = 150,
|
257 |
-
path: Optional[str] = None,
|
258 |
-
pad: float = 0.5,
|
259 |
-
) -> np.ndarray:
|
260 |
-
"""
|
261 |
-
Draw matches between two images.
|
262 |
-
|
263 |
-
Args:
|
264 |
-
mkpts0: List of matches from the first image, with shape (N, 2)
|
265 |
-
mkpts1: List of matches from the second image, with shape (N, 2)
|
266 |
-
img0: First image, with shape (H, W, 3)
|
267 |
-
img1: Second image, with shape (H, W, 3)
|
268 |
-
conf: Confidence values for the matches, with shape (N,)
|
269 |
-
titles: Optional list of title strings for the plot
|
270 |
-
dpi: DPI for the saved image
|
271 |
-
path: Optional path to save the image to. If None, the image is not saved.
|
272 |
-
pad: Padding between subplots
|
273 |
-
|
274 |
-
Returns:
|
275 |
-
The figure as a numpy array with shape (height, width, 3) and dtype uint8
|
276 |
-
containing the RGB values of the figure.
|
277 |
-
"""
|
278 |
-
thr = 0.5
|
279 |
-
color = error_colormap(1 - conf, thr, alpha=0.1)
|
280 |
-
text = [
|
281 |
-
# "image name",
|
282 |
-
f"#Matches: {len(mkpts0)}",
|
283 |
-
]
|
284 |
-
if path:
|
285 |
-
fig2im(
|
286 |
-
make_matching_figure(
|
287 |
-
img0,
|
288 |
-
img1,
|
289 |
-
mkpts0,
|
290 |
-
mkpts1,
|
291 |
-
color,
|
292 |
-
titles=titles,
|
293 |
-
text=text,
|
294 |
-
path=path,
|
295 |
-
dpi=dpi,
|
296 |
-
pad=pad,
|
297 |
-
)
|
298 |
-
)
|
299 |
-
else:
|
300 |
-
return fig2im(
|
301 |
-
make_matching_figure(
|
302 |
-
img0,
|
303 |
-
img1,
|
304 |
-
mkpts0,
|
305 |
-
mkpts1,
|
306 |
-
color,
|
307 |
-
titles=titles,
|
308 |
-
text=text,
|
309 |
-
pad=pad,
|
310 |
-
dpi=dpi,
|
311 |
-
)
|
312 |
-
)
|
313 |
-
|
314 |
-
|
315 |
-
def draw_image_pairs(
|
316 |
-
img0: np.ndarray,
|
317 |
-
img1: np.ndarray,
|
318 |
-
text: List[str] = [],
|
319 |
-
dpi: int = 75,
|
320 |
-
path: Optional[str] = None,
|
321 |
-
pad: float = 0.5,
|
322 |
-
) -> np.ndarray:
|
323 |
-
"""Draw image pair horizontally.
|
324 |
-
|
325 |
-
Args:
|
326 |
-
img0: First image, with shape (H, W, 3)
|
327 |
-
img1: Second image, with shape (H, W, 3)
|
328 |
-
text: List of strings to print. Each string is a new line.
|
329 |
-
dpi: DPI of the figure.
|
330 |
-
path: Path to save the image to. If None, the image is not saved and
|
331 |
-
the function returns the figure as a numpy array with shape
|
332 |
-
(height, width, 3) and dtype uint8 containing the RGB values of the
|
333 |
-
figure.
|
334 |
-
pad: Padding between subplots
|
335 |
-
|
336 |
-
Returns:
|
337 |
-
The figure as a numpy array with shape (height, width, 3) and dtype uint8
|
338 |
-
containing the RGB values of the figure, or None if path is not None.
|
339 |
-
"""
|
340 |
-
# draw image pair
|
341 |
-
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
|
342 |
-
axes[0].imshow(img0) # , cmap='gray')
|
343 |
-
axes[1].imshow(img1) # , cmap='gray')
|
344 |
-
for i in range(2): # clear all frames
|
345 |
-
axes[i].get_yaxis().set_ticks([])
|
346 |
-
axes[i].get_xaxis().set_ticks([])
|
347 |
-
for spine in axes[i].spines.values():
|
348 |
-
spine.set_visible(False)
|
349 |
-
plt.tight_layout(pad=pad)
|
350 |
-
|
351 |
-
# put txts
|
352 |
-
txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
|
353 |
-
fig.text(
|
354 |
-
0.01,
|
355 |
-
0.99,
|
356 |
-
"\n".join(text),
|
357 |
-
transform=fig.axes[0].transAxes,
|
358 |
-
fontsize=15,
|
359 |
-
va="top",
|
360 |
-
ha="left",
|
361 |
-
color=txt_color,
|
362 |
-
)
|
363 |
-
|
364 |
-
# save or return figure
|
365 |
-
if path:
|
366 |
-
plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
|
367 |
-
plt.close()
|
368 |
-
else:
|
369 |
-
return fig2im(fig)
|
370 |
-
|
371 |
-
|
372 |
-
def display_keypoints(pred: dict, titles: List[str] = []):
|
373 |
-
img0 = pred["image0_orig"]
|
374 |
-
img1 = pred["image1_orig"]
|
375 |
-
output_keypoints = plot_images([img0, img1], titles=titles, dpi=300)
|
376 |
-
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
|
377 |
-
plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
|
378 |
-
text = (
|
379 |
-
f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
|
380 |
-
+ f"# keypoints1: {len(pred['keypoints1_orig'])}"
|
381 |
-
)
|
382 |
-
add_text(0, text, fs=15)
|
383 |
-
output_keypoints = fig2im(output_keypoints)
|
384 |
-
return output_keypoints
|
385 |
-
|
386 |
-
|
387 |
-
def display_matches(
|
388 |
-
pred: Dict[str, np.ndarray],
|
389 |
-
titles: List[str] = [],
|
390 |
-
texts: List[str] = [],
|
391 |
-
dpi: int = 300,
|
392 |
-
tag: str = "KPTS_RAW", # KPTS_RAW, KPTS_RANSAC, LINES_RAW, LINES_RANSAC,
|
393 |
-
) -> Tuple[np.ndarray, int]:
|
394 |
-
"""
|
395 |
-
Displays the matches between two images.
|
396 |
-
|
397 |
-
Args:
|
398 |
-
pred: Dictionary containing the original images and the matches.
|
399 |
-
titles: Optional titles for the plot.
|
400 |
-
dpi: Resolution of the plot.
|
401 |
-
|
402 |
-
Returns:
|
403 |
-
The resulting concatenated plot and the number of inliers.
|
404 |
-
"""
|
405 |
-
img0 = pred["image0_orig"]
|
406 |
-
img1 = pred["image1_orig"]
|
407 |
-
num_inliers = 0
|
408 |
-
KPTS0_KEY = None
|
409 |
-
KPTS1_KEY = None
|
410 |
-
confid = None
|
411 |
-
if tag == "KPTS_RAW":
|
412 |
-
KPTS0_KEY = "mkeypoints0_orig"
|
413 |
-
KPTS1_KEY = "mkeypoints1_orig"
|
414 |
-
if "mconf" in pred:
|
415 |
-
confid = pred["mconf"]
|
416 |
-
elif tag == "KPTS_RANSAC":
|
417 |
-
KPTS0_KEY = "mmkeypoints0_orig"
|
418 |
-
KPTS1_KEY = "mmkeypoints1_orig"
|
419 |
-
if "mmconf" in pred:
|
420 |
-
confid = pred["mmconf"]
|
421 |
-
else:
|
422 |
-
# TODO: LINES_RAW, LINES_RANSAC
|
423 |
-
raise ValueError(f"Unknown tag: {tag}")
|
424 |
-
# draw raw matches
|
425 |
-
if (
|
426 |
-
KPTS0_KEY in pred
|
427 |
-
and KPTS1_KEY in pred
|
428 |
-
and pred[KPTS0_KEY] is not None
|
429 |
-
and pred[KPTS1_KEY] is not None
|
430 |
-
): # draw ransac matches
|
431 |
-
mkpts0 = pred[KPTS0_KEY]
|
432 |
-
mkpts1 = pred[KPTS1_KEY]
|
433 |
-
num_inliers = len(mkpts0)
|
434 |
-
if confid is None:
|
435 |
-
confid = np.ones(len(mkpts0))
|
436 |
-
fig_mkpts = draw_matches_core(
|
437 |
-
mkpts0,
|
438 |
-
mkpts1,
|
439 |
-
img0,
|
440 |
-
img1,
|
441 |
-
confid,
|
442 |
-
dpi=dpi,
|
443 |
-
titles=titles,
|
444 |
-
texts=texts,
|
445 |
-
)
|
446 |
-
fig = fig_mkpts
|
447 |
-
elif (
|
448 |
-
"line0_orig" in pred
|
449 |
-
and "line1_orig" in pred
|
450 |
-
and pred["line0_orig"] is not None
|
451 |
-
and pred["line1_orig"] is not None
|
452 |
-
# and (tag == "LINES_RAW" or tag == "LINES_RANSAC")
|
453 |
-
):
|
454 |
-
# lines
|
455 |
-
mtlines0 = pred["line0_orig"]
|
456 |
-
mtlines1 = pred["line1_orig"]
|
457 |
-
num_inliers = len(mtlines0)
|
458 |
-
fig_lines = plot_images(
|
459 |
-
[img0.squeeze(), img1.squeeze()],
|
460 |
-
["Image 0 - matched lines", "Image 1 - matched lines"],
|
461 |
-
dpi=300,
|
462 |
-
)
|
463 |
-
fig_lines = plot_color_line_matches([mtlines0, mtlines1], lw=2)
|
464 |
-
fig_lines = fig2im(fig_lines)
|
465 |
-
|
466 |
-
# keypoints
|
467 |
-
mkpts0 = pred.get("line_keypoints0_orig")
|
468 |
-
mkpts1 = pred.get("line_keypoints1_orig")
|
469 |
-
fig = None
|
470 |
-
if mkpts0 is not None and mkpts1 is not None:
|
471 |
-
num_inliers = len(mkpts0)
|
472 |
-
if "mconf" in pred:
|
473 |
-
mconf = pred["mconf"]
|
474 |
-
else:
|
475 |
-
mconf = np.ones(len(mkpts0))
|
476 |
-
fig_mkpts = draw_matches_core(mkpts0, mkpts1, img0, img1, mconf, dpi=300)
|
477 |
-
fig_lines = cv2.resize(fig_lines, (fig_mkpts.shape[1], fig_mkpts.shape[0]))
|
478 |
-
fig = np.concatenate([fig_mkpts, fig_lines], axis=0)
|
479 |
-
else:
|
480 |
-
fig = fig_lines
|
481 |
-
return fig, num_inliers
|
|
|
1 |
+
import typing
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import matplotlib
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import seaborn as sns
|
10 |
+
|
11 |
+
from ..hloc.utils.viz import add_text, plot_keypoints
|
12 |
+
|
13 |
+
np.random.seed(1995)
|
14 |
+
color_map = np.arange(100)
|
15 |
+
np.random.shuffle(color_map)
|
16 |
+
|
17 |
+
|
18 |
+
def plot_images(
|
19 |
+
imgs: List[np.ndarray],
|
20 |
+
titles: Optional[List[str]] = None,
|
21 |
+
cmaps: Union[str, List[str]] = "gray",
|
22 |
+
dpi: int = 100,
|
23 |
+
size: Optional[int] = 5,
|
24 |
+
pad: float = 0.5,
|
25 |
+
) -> plt.Figure:
|
26 |
+
"""Plot a set of images horizontally.
|
27 |
+
Args:
|
28 |
+
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
|
29 |
+
titles: a list of strings, as titles for each image.
|
30 |
+
cmaps: colormaps for monochrome images. If a single string is given,
|
31 |
+
it is used for all images.
|
32 |
+
dpi: DPI of the figure.
|
33 |
+
size: figure size in inches (width). If not provided, the figure
|
34 |
+
size is determined automatically.
|
35 |
+
pad: padding between subplots, in inches.
|
36 |
+
Returns:
|
37 |
+
The created figure.
|
38 |
+
"""
|
39 |
+
n = len(imgs)
|
40 |
+
if not isinstance(cmaps, list):
|
41 |
+
cmaps = [cmaps] * n
|
42 |
+
figsize = (size * n, size * 6 / 5) if size is not None else None
|
43 |
+
fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
|
44 |
+
|
45 |
+
if n == 1:
|
46 |
+
ax = [ax]
|
47 |
+
for i in range(n):
|
48 |
+
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
|
49 |
+
ax[i].get_yaxis().set_ticks([])
|
50 |
+
ax[i].get_xaxis().set_ticks([])
|
51 |
+
ax[i].set_axis_off()
|
52 |
+
for spine in ax[i].spines.values(): # remove frame
|
53 |
+
spine.set_visible(False)
|
54 |
+
if titles:
|
55 |
+
ax[i].set_title(titles[i])
|
56 |
+
fig.tight_layout(pad=pad)
|
57 |
+
return fig
|
58 |
+
|
59 |
+
|
60 |
+
def plot_color_line_matches(
|
61 |
+
lines: List[np.ndarray],
|
62 |
+
correct_matches: Optional[np.ndarray] = None,
|
63 |
+
lw: float = 2.0,
|
64 |
+
indices: Tuple[int, int] = (0, 1),
|
65 |
+
) -> matplotlib.figure.Figure:
|
66 |
+
"""Plot line matches for existing images with multiple colors.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
lines: List of ndarrays of size (N, 2, 2) representing line segments.
|
70 |
+
correct_matches: Optional bool array of size (N,) indicating correct
|
71 |
+
matches. If not None, display wrong matches with a low alpha.
|
72 |
+
lw: Line width as float pixels.
|
73 |
+
indices: Indices of the images to draw the matches on.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
The modified matplotlib figure.
|
77 |
+
"""
|
78 |
+
n_lines = lines[0].shape[0]
|
79 |
+
colors = sns.color_palette("husl", n_colors=n_lines)
|
80 |
+
np.random.shuffle(colors)
|
81 |
+
alphas = np.ones(n_lines)
|
82 |
+
if correct_matches is not None:
|
83 |
+
alphas[~np.array(correct_matches)] = 0.2
|
84 |
+
|
85 |
+
fig = plt.gcf()
|
86 |
+
ax = typing.cast(List[matplotlib.axes.Axes], fig.axes)
|
87 |
+
assert len(ax) > max(indices)
|
88 |
+
axes = [ax[i] for i in indices]
|
89 |
+
fig.canvas.draw()
|
90 |
+
|
91 |
+
# Plot the lines
|
92 |
+
for a, l in zip(axes, lines): # noqa: E741
|
93 |
+
# Transform the points into the figure coordinate system
|
94 |
+
transFigure = fig.transFigure.inverted()
|
95 |
+
endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
|
96 |
+
endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
|
97 |
+
fig.lines += [
|
98 |
+
matplotlib.lines.Line2D(
|
99 |
+
(endpoint0[i, 0], endpoint1[i, 0]),
|
100 |
+
(endpoint0[i, 1], endpoint1[i, 1]),
|
101 |
+
zorder=1,
|
102 |
+
transform=fig.transFigure,
|
103 |
+
c=colors[i],
|
104 |
+
alpha=alphas[i],
|
105 |
+
linewidth=lw,
|
106 |
+
)
|
107 |
+
for i in range(n_lines)
|
108 |
+
]
|
109 |
+
|
110 |
+
return fig
|
111 |
+
|
112 |
+
|
113 |
+
def make_matching_figure(
|
114 |
+
img0: np.ndarray,
|
115 |
+
img1: np.ndarray,
|
116 |
+
mkpts0: np.ndarray,
|
117 |
+
mkpts1: np.ndarray,
|
118 |
+
color: np.ndarray,
|
119 |
+
titles: Optional[List[str]] = None,
|
120 |
+
kpts0: Optional[np.ndarray] = None,
|
121 |
+
kpts1: Optional[np.ndarray] = None,
|
122 |
+
text: List[str] = [],
|
123 |
+
dpi: int = 75,
|
124 |
+
path: Optional[Path] = None,
|
125 |
+
pad: float = 0.0,
|
126 |
+
) -> Optional[plt.Figure]:
|
127 |
+
"""Draw image pair with matches.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
img0: image0 as HxWx3 numpy array.
|
131 |
+
img1: image1 as HxWx3 numpy array.
|
132 |
+
mkpts0: matched points in image0 as Nx2 numpy array.
|
133 |
+
mkpts1: matched points in image1 as Nx2 numpy array.
|
134 |
+
color: colors for the matches as Nx4 numpy array.
|
135 |
+
titles: titles for the two subplots.
|
136 |
+
kpts0: keypoints in image0 as Kx2 numpy array.
|
137 |
+
kpts1: keypoints in image1 as Kx2 numpy array.
|
138 |
+
text: list of strings to display in the top-left corner of the image.
|
139 |
+
dpi: dots per inch of the saved figure.
|
140 |
+
path: if not None, save the figure to this path.
|
141 |
+
pad: padding around the image as a fraction of the image size.
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
The matplotlib Figure object if path is None.
|
145 |
+
"""
|
146 |
+
# draw image pair
|
147 |
+
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
|
148 |
+
axes[0].imshow(img0) # , cmap='gray')
|
149 |
+
axes[1].imshow(img1) # , cmap='gray')
|
150 |
+
for i in range(2): # clear all frames
|
151 |
+
axes[i].get_yaxis().set_ticks([])
|
152 |
+
axes[i].get_xaxis().set_ticks([])
|
153 |
+
for spine in axes[i].spines.values():
|
154 |
+
spine.set_visible(False)
|
155 |
+
if titles is not None:
|
156 |
+
axes[i].set_title(titles[i])
|
157 |
+
|
158 |
+
plt.tight_layout(pad=pad)
|
159 |
+
|
160 |
+
if kpts0 is not None:
|
161 |
+
assert kpts1 is not None
|
162 |
+
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c="w", s=5)
|
163 |
+
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c="w", s=5)
|
164 |
+
|
165 |
+
# draw matches
|
166 |
+
if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0 and mkpts0.shape == mkpts1.shape:
|
167 |
+
fig.canvas.draw()
|
168 |
+
transFigure = fig.transFigure.inverted()
|
169 |
+
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
|
170 |
+
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
|
171 |
+
fig.lines = [
|
172 |
+
matplotlib.lines.Line2D(
|
173 |
+
(fkpts0[i, 0], fkpts1[i, 0]),
|
174 |
+
(fkpts0[i, 1], fkpts1[i, 1]),
|
175 |
+
transform=fig.transFigure,
|
176 |
+
c=color[i],
|
177 |
+
linewidth=2,
|
178 |
+
)
|
179 |
+
for i in range(len(mkpts0))
|
180 |
+
]
|
181 |
+
|
182 |
+
# freeze the axes to prevent the transform to change
|
183 |
+
axes[0].autoscale(enable=False)
|
184 |
+
axes[1].autoscale(enable=False)
|
185 |
+
|
186 |
+
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color[..., :3], s=4)
|
187 |
+
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color[..., :3], s=4)
|
188 |
+
|
189 |
+
# put txts
|
190 |
+
txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
|
191 |
+
fig.text(
|
192 |
+
0.01,
|
193 |
+
0.99,
|
194 |
+
"\n".join(text),
|
195 |
+
transform=fig.axes[0].transAxes,
|
196 |
+
fontsize=15,
|
197 |
+
va="top",
|
198 |
+
ha="left",
|
199 |
+
color=txt_color,
|
200 |
+
)
|
201 |
+
|
202 |
+
# save or return figure
|
203 |
+
if path:
|
204 |
+
plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
|
205 |
+
plt.close()
|
206 |
+
else:
|
207 |
+
return fig
|
208 |
+
|
209 |
+
|
210 |
+
def error_colormap(err: np.ndarray, thr: float, alpha: float = 1.0) -> np.ndarray:
|
211 |
+
"""
|
212 |
+
Create a colormap based on the error values.
|
213 |
+
|
214 |
+
Args:
|
215 |
+
err: Error values as a numpy array of shape (N,).
|
216 |
+
thr: Threshold value for the error.
|
217 |
+
alpha: Alpha value for the colormap, between 0 and 1.
|
218 |
+
|
219 |
+
Returns:
|
220 |
+
Colormap as a numpy array of shape (N, 4) with values in [0, 1].
|
221 |
+
"""
|
222 |
+
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
|
223 |
+
x = 1 - np.clip(err / (thr * 2), 0, 1)
|
224 |
+
return np.clip(
|
225 |
+
np.stack([2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x) * alpha], -1),
|
226 |
+
0,
|
227 |
+
1,
|
228 |
+
)
|
229 |
+
|
230 |
+
|
231 |
+
def fig2im(fig: matplotlib.figure.Figure) -> np.ndarray:
|
232 |
+
"""
|
233 |
+
Convert a matplotlib figure to a numpy array with RGB values.
|
234 |
+
|
235 |
+
Args:
|
236 |
+
fig: A matplotlib figure.
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
A numpy array with shape (height, width, 3) and dtype uint8 containing
|
240 |
+
the RGB values of the figure.
|
241 |
+
"""
|
242 |
+
fig.canvas.draw()
|
243 |
+
(width, height) = fig.canvas.get_width_height()
|
244 |
+
buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype="u1")
|
245 |
+
return buf_ndarray.reshape(height, width, 3)
|
246 |
+
|
247 |
+
|
248 |
+
def draw_matches_core(
|
249 |
+
mkpts0: List[np.ndarray],
|
250 |
+
mkpts1: List[np.ndarray],
|
251 |
+
img0: np.ndarray,
|
252 |
+
img1: np.ndarray,
|
253 |
+
conf: np.ndarray,
|
254 |
+
titles: Optional[List[str]] = None,
|
255 |
+
texts: Optional[List[str]] = None,
|
256 |
+
dpi: int = 150,
|
257 |
+
path: Optional[str] = None,
|
258 |
+
pad: float = 0.5,
|
259 |
+
) -> np.ndarray:
|
260 |
+
"""
|
261 |
+
Draw matches between two images.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
mkpts0: List of matches from the first image, with shape (N, 2)
|
265 |
+
mkpts1: List of matches from the second image, with shape (N, 2)
|
266 |
+
img0: First image, with shape (H, W, 3)
|
267 |
+
img1: Second image, with shape (H, W, 3)
|
268 |
+
conf: Confidence values for the matches, with shape (N,)
|
269 |
+
titles: Optional list of title strings for the plot
|
270 |
+
dpi: DPI for the saved image
|
271 |
+
path: Optional path to save the image to. If None, the image is not saved.
|
272 |
+
pad: Padding between subplots
|
273 |
+
|
274 |
+
Returns:
|
275 |
+
The figure as a numpy array with shape (height, width, 3) and dtype uint8
|
276 |
+
containing the RGB values of the figure.
|
277 |
+
"""
|
278 |
+
thr = 0.5
|
279 |
+
color = error_colormap(1 - conf, thr, alpha=0.1)
|
280 |
+
text = [
|
281 |
+
# "image name",
|
282 |
+
f"#Matches: {len(mkpts0)}",
|
283 |
+
]
|
284 |
+
if path:
|
285 |
+
fig2im(
|
286 |
+
make_matching_figure(
|
287 |
+
img0,
|
288 |
+
img1,
|
289 |
+
mkpts0,
|
290 |
+
mkpts1,
|
291 |
+
color,
|
292 |
+
titles=titles,
|
293 |
+
text=text,
|
294 |
+
path=path,
|
295 |
+
dpi=dpi,
|
296 |
+
pad=pad,
|
297 |
+
)
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
return fig2im(
|
301 |
+
make_matching_figure(
|
302 |
+
img0,
|
303 |
+
img1,
|
304 |
+
mkpts0,
|
305 |
+
mkpts1,
|
306 |
+
color,
|
307 |
+
titles=titles,
|
308 |
+
text=text,
|
309 |
+
pad=pad,
|
310 |
+
dpi=dpi,
|
311 |
+
)
|
312 |
+
)
|
313 |
+
|
314 |
+
|
315 |
+
def draw_image_pairs(
|
316 |
+
img0: np.ndarray,
|
317 |
+
img1: np.ndarray,
|
318 |
+
text: List[str] = [],
|
319 |
+
dpi: int = 75,
|
320 |
+
path: Optional[str] = None,
|
321 |
+
pad: float = 0.5,
|
322 |
+
) -> np.ndarray:
|
323 |
+
"""Draw image pair horizontally.
|
324 |
+
|
325 |
+
Args:
|
326 |
+
img0: First image, with shape (H, W, 3)
|
327 |
+
img1: Second image, with shape (H, W, 3)
|
328 |
+
text: List of strings to print. Each string is a new line.
|
329 |
+
dpi: DPI of the figure.
|
330 |
+
path: Path to save the image to. If None, the image is not saved and
|
331 |
+
the function returns the figure as a numpy array with shape
|
332 |
+
(height, width, 3) and dtype uint8 containing the RGB values of the
|
333 |
+
figure.
|
334 |
+
pad: Padding between subplots
|
335 |
+
|
336 |
+
Returns:
|
337 |
+
The figure as a numpy array with shape (height, width, 3) and dtype uint8
|
338 |
+
containing the RGB values of the figure, or None if path is not None.
|
339 |
+
"""
|
340 |
+
# draw image pair
|
341 |
+
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
|
342 |
+
axes[0].imshow(img0) # , cmap='gray')
|
343 |
+
axes[1].imshow(img1) # , cmap='gray')
|
344 |
+
for i in range(2): # clear all frames
|
345 |
+
axes[i].get_yaxis().set_ticks([])
|
346 |
+
axes[i].get_xaxis().set_ticks([])
|
347 |
+
for spine in axes[i].spines.values():
|
348 |
+
spine.set_visible(False)
|
349 |
+
plt.tight_layout(pad=pad)
|
350 |
+
|
351 |
+
# put txts
|
352 |
+
txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
|
353 |
+
fig.text(
|
354 |
+
0.01,
|
355 |
+
0.99,
|
356 |
+
"\n".join(text),
|
357 |
+
transform=fig.axes[0].transAxes,
|
358 |
+
fontsize=15,
|
359 |
+
va="top",
|
360 |
+
ha="left",
|
361 |
+
color=txt_color,
|
362 |
+
)
|
363 |
+
|
364 |
+
# save or return figure
|
365 |
+
if path:
|
366 |
+
plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
|
367 |
+
plt.close()
|
368 |
+
else:
|
369 |
+
return fig2im(fig)
|
370 |
+
|
371 |
+
|
372 |
+
def display_keypoints(pred: dict, titles: List[str] = []):
|
373 |
+
img0 = pred["image0_orig"]
|
374 |
+
img1 = pred["image1_orig"]
|
375 |
+
output_keypoints = plot_images([img0, img1], titles=titles, dpi=300)
|
376 |
+
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
|
377 |
+
plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
|
378 |
+
text = (
|
379 |
+
f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
|
380 |
+
+ f"# keypoints1: {len(pred['keypoints1_orig'])}"
|
381 |
+
)
|
382 |
+
add_text(0, text, fs=15)
|
383 |
+
output_keypoints = fig2im(output_keypoints)
|
384 |
+
return output_keypoints
|
385 |
+
|
386 |
+
|
387 |
+
def display_matches(
|
388 |
+
pred: Dict[str, np.ndarray],
|
389 |
+
titles: List[str] = [],
|
390 |
+
texts: List[str] = [],
|
391 |
+
dpi: int = 300,
|
392 |
+
tag: str = "KPTS_RAW", # KPTS_RAW, KPTS_RANSAC, LINES_RAW, LINES_RANSAC,
|
393 |
+
) -> Tuple[np.ndarray, int]:
|
394 |
+
"""
|
395 |
+
Displays the matches between two images.
|
396 |
+
|
397 |
+
Args:
|
398 |
+
pred: Dictionary containing the original images and the matches.
|
399 |
+
titles: Optional titles for the plot.
|
400 |
+
dpi: Resolution of the plot.
|
401 |
+
|
402 |
+
Returns:
|
403 |
+
The resulting concatenated plot and the number of inliers.
|
404 |
+
"""
|
405 |
+
img0 = pred["image0_orig"]
|
406 |
+
img1 = pred["image1_orig"]
|
407 |
+
num_inliers = 0
|
408 |
+
KPTS0_KEY = None
|
409 |
+
KPTS1_KEY = None
|
410 |
+
confid = None
|
411 |
+
if tag == "KPTS_RAW":
|
412 |
+
KPTS0_KEY = "mkeypoints0_orig"
|
413 |
+
KPTS1_KEY = "mkeypoints1_orig"
|
414 |
+
if "mconf" in pred:
|
415 |
+
confid = pred["mconf"]
|
416 |
+
elif tag == "KPTS_RANSAC":
|
417 |
+
KPTS0_KEY = "mmkeypoints0_orig"
|
418 |
+
KPTS1_KEY = "mmkeypoints1_orig"
|
419 |
+
if "mmconf" in pred:
|
420 |
+
confid = pred["mmconf"]
|
421 |
+
else:
|
422 |
+
# TODO: LINES_RAW, LINES_RANSAC
|
423 |
+
raise ValueError(f"Unknown tag: {tag}")
|
424 |
+
# draw raw matches
|
425 |
+
if (
|
426 |
+
KPTS0_KEY in pred
|
427 |
+
and KPTS1_KEY in pred
|
428 |
+
and pred[KPTS0_KEY] is not None
|
429 |
+
and pred[KPTS1_KEY] is not None
|
430 |
+
): # draw ransac matches
|
431 |
+
mkpts0 = pred[KPTS0_KEY]
|
432 |
+
mkpts1 = pred[KPTS1_KEY]
|
433 |
+
num_inliers = len(mkpts0)
|
434 |
+
if confid is None:
|
435 |
+
confid = np.ones(len(mkpts0))
|
436 |
+
fig_mkpts = draw_matches_core(
|
437 |
+
mkpts0,
|
438 |
+
mkpts1,
|
439 |
+
img0,
|
440 |
+
img1,
|
441 |
+
confid,
|
442 |
+
dpi=dpi,
|
443 |
+
titles=titles,
|
444 |
+
texts=texts,
|
445 |
+
)
|
446 |
+
fig = fig_mkpts
|
447 |
+
elif (
|
448 |
+
"line0_orig" in pred
|
449 |
+
and "line1_orig" in pred
|
450 |
+
and pred["line0_orig"] is not None
|
451 |
+
and pred["line1_orig"] is not None
|
452 |
+
# and (tag == "LINES_RAW" or tag == "LINES_RANSAC")
|
453 |
+
):
|
454 |
+
# lines
|
455 |
+
mtlines0 = pred["line0_orig"]
|
456 |
+
mtlines1 = pred["line1_orig"]
|
457 |
+
num_inliers = len(mtlines0)
|
458 |
+
fig_lines = plot_images(
|
459 |
+
[img0.squeeze(), img1.squeeze()],
|
460 |
+
["Image 0 - matched lines", "Image 1 - matched lines"],
|
461 |
+
dpi=300,
|
462 |
+
)
|
463 |
+
fig_lines = plot_color_line_matches([mtlines0, mtlines1], lw=2)
|
464 |
+
fig_lines = fig2im(fig_lines)
|
465 |
+
|
466 |
+
# keypoints
|
467 |
+
mkpts0 = pred.get("line_keypoints0_orig")
|
468 |
+
mkpts1 = pred.get("line_keypoints1_orig")
|
469 |
+
fig = None
|
470 |
+
if mkpts0 is not None and mkpts1 is not None:
|
471 |
+
num_inliers = len(mkpts0)
|
472 |
+
if "mconf" in pred:
|
473 |
+
mconf = pred["mconf"]
|
474 |
+
else:
|
475 |
+
mconf = np.ones(len(mkpts0))
|
476 |
+
fig_mkpts = draw_matches_core(mkpts0, mkpts1, img0, img1, mconf, dpi=300)
|
477 |
+
fig_lines = cv2.resize(fig_lines, (fig_mkpts.shape[1], fig_mkpts.shape[0]))
|
478 |
+
fig = np.concatenate([fig_mkpts, fig_lines], axis=0)
|
479 |
+
else:
|
480 |
+
fig = fig_lines
|
481 |
+
return fig, num_inliers
|