Spaces:
Running
Running
import torch | |
from .superpoint import SuperPoint | |
from .models.matchers.lightglue import LightGlue | |
class Matching(torch.nn.Module): | |
""" Image Matching Frontend (SuperPoint + SuperGlue) """ | |
# noinspection PyDefaultArgument | |
def __init__(self, config={}): | |
super().__init__() | |
self.detector = SuperPoint({ | |
'max_num_keypoints': 2048, | |
'force_num_keypoints': True, | |
'detection_threshold': 0.0, | |
'nms_radius': 3, | |
'trainable': False, | |
}) | |
self.model = LightGlue({ | |
'filter_threshold': 0.1, | |
'flash': False, | |
'checkpointed': True, | |
}) | |
def forward(self, data): | |
""" Run SuperPoint (optionally) and SuperGlue | |
SuperPoint is skipped if ['keypoints0', 'keypoints1'] exist in input | |
Args: | |
data: dictionary with minimal keys: ['image0', 'image1'] | |
""" | |
pred = {} | |
pred.update({k + '0': v for k, v in self.detector({ | |
"image": data["gray0"], | |
"image_size": data["size0"], | |
}).items()}) | |
pred.update({k + '1': v for k, v in self.detector({ | |
"image": data["gray1"], | |
"image_size": data["size1"], | |
}).items()}) | |
pred.update(self.model({ | |
**pred, **{ | |
'resize0': data['size0'], | |
'resize1': data['size1'] | |
} | |
})) | |
return pred | |