Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from .superpoint import SuperPoint | |
| from .models.matchers.lightglue import LightGlue | |
| class Matching(torch.nn.Module): | |
| """ Image Matching Frontend (SuperPoint + SuperGlue) """ | |
| # noinspection PyDefaultArgument | |
| def __init__(self, config={}): | |
| super().__init__() | |
| self.detector = SuperPoint({ | |
| 'max_num_keypoints': 2048, | |
| 'force_num_keypoints': True, | |
| 'detection_threshold': 0.0, | |
| 'nms_radius': 3, | |
| 'trainable': False, | |
| }) | |
| self.model = LightGlue({ | |
| 'filter_threshold': 0.1, | |
| 'flash': False, | |
| 'checkpointed': True, | |
| }) | |
| def forward(self, data): | |
| """ Run SuperPoint (optionally) and SuperGlue | |
| SuperPoint is skipped if ['keypoints0', 'keypoints1'] exist in input | |
| Args: | |
| data: dictionary with minimal keys: ['image0', 'image1'] | |
| """ | |
| pred = {} | |
| pred.update({k + '0': v for k, v in self.detector({ | |
| "image": data["gray0"], | |
| "image_size": data["size0"], | |
| }).items()}) | |
| pred.update({k + '1': v for k, v in self.detector({ | |
| "image": data["gray1"], | |
| "image_size": data["size1"], | |
| }).items()}) | |
| pred.update(self.model({ | |
| **pred, **{ | |
| 'resize0': data['size0'], | |
| 'resize1': data['size1'] | |
| } | |
| })) | |
| return pred | |