Realcat's picture
update: major change
499e141
import os
import cv2
import time
import yaml
import torch
import datetime
from tensorboardX import SummaryWriter
import torchvision.transforms as tvf
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from nets.geom import getK, getWarp, _grid_positions, getWarpNoValidate
from nets.loss import make_detector_loss
from nets.score import extract_kpts
from nets.sampler import NghSampler2
from nets.reliability_loss import ReliabilityLoss
from datasets.noise_simulator import NoiseSimulator
from nets.l2net import Quad_L2Net
class SingleTrainer:
def __init__(self, config, device, loader, job_name, start_cnt):
self.config = config
self.device = device
self.loader = loader
# tensorboard writer construction
os.makedirs('./runs/', exist_ok=True)
if job_name != '':
self.log_dir = f'runs/{job_name}'
else:
self.log_dir = f'runs/{datetime.datetime.now().strftime("%m-%d-%H%M%S")}'
self.writer = SummaryWriter(self.log_dir)
with open(f'{self.log_dir}/config.yaml', 'w') as f:
yaml.dump(config, f)
if config['network']['input_type'] == 'gray' or config['network']['input_type'] == 'raw-gray':
self.model = eval(f'{config["network"]["model"]}(inchan=1)').to(device)
elif config['network']['input_type'] == 'rgb' or config['network']['input_type'] == 'raw-demosaic':
self.model = eval(f'{config["network"]["model"]}(inchan=3)').to(device)
elif config['network']['input_type'] == 'raw':
self.model = eval(f'{config["network"]["model"]}(inchan=4)').to(device)
else:
raise NotImplementedError()
# noise maker
self.noise_maker = NoiseSimulator(device)
# load model
self.cnt = 0
if start_cnt != 0:
self.model.load_state_dict(torch.load(f'{self.log_dir}/model_{start_cnt:06d}.pth'))
self.cnt = start_cnt + 1
# sampler
sampler = NghSampler2(ngh=7, subq=-8, subd=1, pos_d=3, neg_d=5, border=16,
subd_neg=-8,maxpool_pos=True).to(device)
self.reliability_loss = ReliabilityLoss(sampler, base=0.3, nq=20).to(device)
# reliability map conv
self.model.clf = nn.Conv2d(128, 2, kernel_size=1).cuda()
# optimizer and scheduler
if self.config['training']['optimizer'] == 'SGD':
self.optimizer = torch.optim.SGD(
[{'params': self.model.parameters(), 'initial_lr': self.config['training']['lr']}],
lr=self.config['training']['lr'],
momentum=self.config['training']['momentum'],
weight_decay=self.config['training']['weight_decay'],
)
elif self.config['training']['optimizer'] == 'Adam':
self.optimizer = torch.optim.Adam(
[{'params': self.model.parameters(), 'initial_lr': self.config['training']['lr']}],
lr=self.config['training']['lr'],
weight_decay=self.config['training']['weight_decay']
)
else:
raise NotImplementedError()
self.lr_scheduler = torch.optim.lr_scheduler.StepLR(
self.optimizer,
step_size=self.config['training']['lr_step'],
gamma=self.config['training']['lr_gamma'],
last_epoch=start_cnt
)
for param_tensor in self.model.state_dict():
print(param_tensor, "\t", self.model.state_dict()[param_tensor].size())
def save(self, iter_num):
torch.save(self.model.state_dict(), f'{self.log_dir}/model_{iter_num:06d}.pth')
def load(self, path):
self.model.load_state_dict(torch.load(path))
def train(self):
self.model.train()
for epoch in range(2):
for batch_idx, inputs in enumerate(self.loader):
self.optimizer.zero_grad()
t = time.time()
# preprocess and add noise
img0_ori, noise_img0_ori = self.preprocess_noise_pair(inputs['img0'], self.cnt)
img1_ori, noise_img1_ori = self.preprocess_noise_pair(inputs['img1'], self.cnt)
img0 = img0_ori.permute(0, 3, 1, 2).float().to(self.device)
img1 = img1_ori.permute(0, 3, 1, 2).float().to(self.device)
if self.config['network']['input_type'] == 'rgb':
# 3-channel rgb
RGB_mean = [0.485, 0.456, 0.406]
RGB_std = [0.229, 0.224, 0.225]
norm_RGB = tvf.Normalize(mean=RGB_mean, std=RGB_std)
img0 = norm_RGB(img0)
img1 = norm_RGB(img1)
noise_img0 = norm_RGB(noise_img0)
noise_img1 = norm_RGB(noise_img1)
elif self.config['network']['input_type'] == 'gray':
# 1-channel
img0 = torch.mean(img0, dim=1, keepdim=True)
img1 = torch.mean(img1, dim=1, keepdim=True)
noise_img0 = torch.mean(noise_img0, dim=1, keepdim=True)
noise_img1 = torch.mean(noise_img1, dim=1, keepdim=True)
norm_gray0 = tvf.Normalize(mean=img0.mean(), std=img0.std())
norm_gray1 = tvf.Normalize(mean=img1.mean(), std=img1.std())
img0 = norm_gray0(img0)
img1 = norm_gray1(img1)
noise_img0 = norm_gray0(noise_img0)
noise_img1 = norm_gray1(noise_img1)
elif self.config['network']['input_type'] == 'raw':
# 4-channel
pass
elif self.config['network']['input_type'] == 'raw-demosaic':
# 3-channel
pass
else:
raise NotImplementedError()
desc0, score_map0, _, _ = self.model(img0)
desc1, score_map1, _, _ = self.model(img1)
cur_feat_size0 = torch.tensor(score_map0.shape[2:])
cur_feat_size1 = torch.tensor(score_map1.shape[2:])
conf0 = F.softmax(self.model.clf(torch.abs(desc0)**2.0), dim=1)[:,1:2]
conf1 = F.softmax(self.model.clf(torch.abs(desc1)**2.0), dim=1)[:,1:2]
desc0 = desc0.permute(0, 2, 3, 1)
desc1 = desc1.permute(0, 2, 3, 1)
score_map0 = score_map0.permute(0, 2, 3, 1)
score_map1 = score_map1.permute(0, 2, 3, 1)
conf0 = conf0.permute(0, 2, 3, 1)
conf1 = conf1.permute(0, 2, 3, 1)
r_K0 = getK(inputs['ori_img_size0'], cur_feat_size0, inputs['K0']).to(self.device)
r_K1 = getK(inputs['ori_img_size1'], cur_feat_size1, inputs['K1']).to(self.device)
pos0 = _grid_positions(
cur_feat_size0[0], cur_feat_size0[1], img0.shape[0]).to(self.device)
pos0_for_rel, pos1_for_rel, _ = getWarpNoValidate(
pos0, inputs['rel_pose'].to(self.device), inputs['depth0'].to(self.device),
r_K0, inputs['depth1'].to(self.device), r_K1, img0.shape[0])
pos0, pos1, _ = getWarp(
pos0, inputs['rel_pose'].to(self.device), inputs['depth0'].to(self.device),
r_K0, inputs['depth1'].to(self.device), r_K1, img0.shape[0])
reliab_loss = self.reliability_loss(desc0, desc1, conf0, conf1, pos0_for_rel, pos1_for_rel, img0.shape[0], img0.shape[2], img0.shape[3])
det_structured_loss, det_accuracy = make_detector_loss(
pos0, pos1, desc0, desc1,
score_map0, score_map1, img0.shape[0],
self.config['network']['use_corr_n'],
self.config['network']['loss_type'],
self.config
)
total_loss = det_structured_loss
self.writer.add_scalar("loss/det_loss_normal", det_structured_loss, self.cnt)
total_loss += reliab_loss
self.writer.add_scalar("acc/normal_acc", det_accuracy, self.cnt)
self.writer.add_scalar("loss/total_loss", total_loss, self.cnt)
self.writer.add_scalar("loss/reliab_loss", reliab_loss, self.cnt)
print('iter={},\tloss={:.4f},\tacc={:.4f},\t{:.4f}s/iter'.format(self.cnt, total_loss, det_accuracy, time.time()-t))
if det_structured_loss != 0:
total_loss.backward()
self.optimizer.step()
self.lr_scheduler.step()
if self.cnt % 100 == 0:
indices0, scores0 = extract_kpts(
score_map0.permute(0, 3, 1, 2),
k=self.config['network']['det']['kpt_n'],
score_thld=self.config['network']['det']['score_thld'],
nms_size=self.config['network']['det']['nms_size'],
eof_size=self.config['network']['det']['eof_size'],
edge_thld=self.config['network']['det']['edge_thld']
)
indices1, scores1 = extract_kpts(
score_map1.permute(0, 3, 1, 2),
k=self.config['network']['det']['kpt_n'],
score_thld=self.config['network']['det']['score_thld'],
nms_size=self.config['network']['det']['nms_size'],
eof_size=self.config['network']['det']['eof_size'],
edge_thld=self.config['network']['det']['edge_thld']
)
if self.config['network']['input_type'] == 'raw':
kpt_img0 = self.showKeyPoints(img0_ori[0][..., :3] * 255., indices0[0])
kpt_img1 = self.showKeyPoints(img1_ori[0][..., :3] * 255., indices1[0])
else:
kpt_img0 = self.showKeyPoints(img0_ori[0] * 255., indices0[0])
kpt_img1 = self.showKeyPoints(img1_ori[0] * 255., indices1[0])
self.writer.add_image('img0/kpts', kpt_img0, self.cnt, dataformats='HWC')
self.writer.add_image('img1/kpts', kpt_img1, self.cnt, dataformats='HWC')
self.writer.add_image('img0/score_map', score_map0[0], self.cnt, dataformats='HWC')
self.writer.add_image('img1/score_map', score_map1[0], self.cnt, dataformats='HWC')
self.writer.add_image('img0/conf', conf0[0], self.cnt, dataformats='HWC')
self.writer.add_image('img1/conf', conf1[0], self.cnt, dataformats='HWC')
if self.cnt % 10000 == 0:
self.save(self.cnt)
self.cnt += 1
def showKeyPoints(self, img, indices):
key_points = cv2.KeyPoint_convert(indices.cpu().float().numpy()[:, ::-1])
img = img.numpy().astype('uint8')
img = cv2.drawKeypoints(img, key_points, None, color=(0, 255, 0))
return img
def preprocess(self, img, iter_idx):
if not self.config['network']['noise'] and 'raw' not in self.config['network']['input_type']:
return img
raw = self.noise_maker.rgb2raw(img, batched=True)
if self.config['network']['noise']:
ratio_dec = min(self.config['network']['noise_maxstep'], iter_idx) / self.config['network']['noise_maxstep']
raw = self.noise_maker.raw2noisyRaw(raw, ratio_dec=ratio_dec, batched=True)
if self.config['network']['input_type'] == 'raw':
return torch.tensor(self.noise_maker.raw2packedRaw(raw, batched=True))
if self.config['network']['input_type'] == 'raw-demosaic':
return torch.tensor(self.noise_maker.raw2demosaicRaw(raw, batched=True))
rgb = self.noise_maker.raw2rgb(raw, batched=True)
if self.config['network']['input_type'] == 'rgb' or self.config['network']['input_type'] == 'gray':
return torch.tensor(rgb)
raise NotImplementedError()
def preprocess_noise_pair(self, img, iter_idx):
assert self.config['network']['noise']
raw = self.noise_maker.rgb2raw(img, batched=True)
ratio_dec = min(self.config['network']['noise_maxstep'], iter_idx) / self.config['network']['noise_maxstep']
noise_raw = self.noise_maker.raw2noisyRaw(raw, ratio_dec=ratio_dec, batched=True)
if self.config['network']['input_type'] == 'raw':
return torch.tensor(self.noise_maker.raw2packedRaw(raw, batched=True)), \
torch.tensor(self.noise_maker.raw2packedRaw(noise_raw, batched=True))
if self.config['network']['input_type'] == 'raw-demosaic':
return torch.tensor(self.noise_maker.raw2demosaicRaw(raw, batched=True)), \
torch.tensor(self.noise_maker.raw2demosaicRaw(noise_raw, batched=True))
if self.config['network']['input_type'] == 'raw-gray':
factor = torch.tensor([0.299, 0.587, 0.114]).double()
return torch.matmul(torch.tensor(self.noise_maker.raw2demosaicRaw(raw, batched=True)), factor).unsqueeze(-1), \
torch.matmul(torch.tensor(self.noise_maker.raw2demosaicRaw(noise_raw, batched=True)), factor).unsqueeze(-1)
noise_rgb = self.noise_maker.raw2rgb(noise_raw, batched=True)
if self.config['network']['input_type'] == 'rgb' or self.config['network']['input_type'] == 'gray':
return img, torch.tensor(noise_rgb)
raise NotImplementedError()