Realcat's picture
add: rdd sparse and dense match
1b369eb
import sys
import yaml
import torch
from pathlib import Path
from ..utils.base_model import BaseModel
from .. import logger, MODEL_REPO_ID, DEVICE
rdd_path = Path(__file__).parent / "../../third_party/rdd"
sys.path.append(str(rdd_path))
from RDD.RDD import build as build_rdd
from RDD.RDD_helper import RDD_helper
class RddDense(BaseModel):
default_conf = {
"keypoint_threshold": 0.1,
"max_keypoints": 4096,
"model_name": "RDD-v2.pth",
"match_threshold": 0.1,
}
required_inputs = ["image0", "image1"]
def _init(self, conf):
logger.info("Loading RDD model...")
model_path = self._download_model(
repo_id=MODEL_REPO_ID,
filename="{}/{}".format(
"rdd", self.conf["model_name"]
),
)
config_path = rdd_path / "configs/default.yaml"
with open(config_path, "r") as file:
config = yaml.safe_load(file)
config["top_k"] = conf["max_keypoints"]
config["detection_threshold"] = conf["keypoint_threshold"]
config["device"] = DEVICE
rdd_net = build_rdd(config=config, weights=model_path)
rdd_net.eval()
self.net = RDD_helper(rdd_net)
logger.info("Loading RDD model done!")
def _forward(self, data):
img0 = data["image0"]
img1 = data["image1"]
mkpts_0, mkpts_1, conf = self.net.match_dense(img0, img1, thr=self.conf["match_threshold"])
pred = {
"keypoints0": torch.from_numpy(mkpts_0),
"keypoints1": torch.from_numpy(mkpts_1),
"mconf": torch.from_numpy(conf),
}
return pred