Realcat's picture
update: major change
499e141
raw
history blame
21.5 kB
# -*- coding: utf-8 -*-
# @Author : xuelun
import os
import cv2
import torch
import random
import numpy as np
import torch.nn.functional as F
from tqdm import tqdm
from os import listdir
from pathlib import Path
from functools import reduce
from datetime import datetime
from argparse import ArgumentParser
from os.path import join, isdir, exists
from datasets.dataset import RGBDDataset
from datasets.walk import cfg
from datasets.walk.utils import covision, intersected, read_images
from datasets.walk.utils import fast_make_matching_robust_fitting_figure
parse_mtd = lambda name: name.parent.stem.split()[1]
parse_skip = lambda name: int(str(name).split(os.sep)[-1].rpartition('SP')[-1].strip().rpartition(' ')[0])
parse_resize = lambda name: str(name).split(os.sep)[-2].rpartition('[R]')[-1].rpartition('[S]')[0].strip()
create_table = lambda x, y, w: dict(zip(np.round(x) + np.round(y) * w, list(range(len(x)))))
class WALKDataset(RGBDDataset):
def __init__(self,
root_dir, # data root dit
npz_root, # data info, like, overlap, image_path, depth_path
seq_name, # current sequence
mode, # train or val or test
max_resize, # max edge after resize
df, # general is 8 for ResNet w/ pre 3-layers
padding, # padding image for batch training
augment_fn, # augmentation function
max_samples, # max sample in current sequence
**kwargs):
super().__init__()
self.mode = mode
self.root_dir = root_dir
self.scene_path = join(root_dir, seq_name)
pseudo_labels = kwargs.get('PSEUDO_LABELS', None)
npz_paths = [join(npz_root, x) for x in pseudo_labels]
npz_paths = [x for x in npz_paths if exists(x)]
npz_names = [{d[:int(d.split()[-1])]: Path(path, d) for d in listdir(path) if isdir(join(path, d))} for path in npz_paths]
npz_paths = [name_dict[seq_name] for name_dict in npz_names if seq_name in name_dict.keys()]
self.propagating = kwargs.get('PROPAGATING', False)
if self.propagating and len(npz_paths) != 24:
print(f'{seq_name} has {len(npz_paths)} pseudo labels, but 24 are expected.')
exit(0)
self.scale = 1 / df
self.scene_id = seq_name
self.skips = sorted(list({parse_skip(name) for name in npz_paths}))
self.resizes = sorted(list({parse_resize(name) for name in npz_paths}))
self.methods = sorted(list({parse_mtd(name) for name in npz_paths}))[::-1]
self.min_final_matches = kwargs.get('MIN_FINAL_MATCHES', None)
self.min_filter_matches = kwargs.get('MIN_FILTER_MATCHES', None)
pproot = kwargs.get('PROPAGATE_ROOT', None)
ppid = ' '.join(self.methods + list(map(str, self.skips)) + self.resizes + [f'FM {self.min_filter_matches}', f'PM {self.min_final_matches}'])
self.pproot = join(pproot, ppid, seq_name)
if not self.propagating:
assert exists(self.pproot)
elif not exists(self.pproot):
os.makedirs(self.pproot, exist_ok=True)
image_root = kwargs.get('VIDEO_IMAGE_ROOT', None)
self.image_root = join(image_root, seq_name)
if not exists(self.image_root):
os.makedirs(self.image_root, exist_ok=True)
self.step = kwargs.get('STEP', None)
self.pix_thr = kwargs.get('PIX_THR', None)
self.fix_matches = kwargs.get('FIX_MATCHES', None)
source_root = kwargs.get('SOURCE_ROOT', None)
scap = cv2.VideoCapture(join(source_root, seq_name + '.mp4'))
self.pseudo_size = [int(scap.get(3)), int(scap.get(4))]
source_fps = int(scap.get(5))
video_path = join(root_dir, seq_name + '.mp4')
vcap = cv2.VideoCapture(video_path)
self.frame_size = [int(vcap.get(3)), int(vcap.get(4))]
if self.propagating:
nums = {skip: [] for skip in self.skips}
idxs = {skip: [] for skip in self.skips}
self.path = {skip: [] for skip in self.skips}
for npz_path in npz_paths:
skip = parse_skip(npz_path)
assert exists(npz_path / 'nums.npy')
with open(npz_path / 'nums.npy', 'rb') as f:
npz = np.load(f)
nums[skip].append(npz)
assert exists(npz_path / 'idxs.npy')
with open(npz_path / 'idxs.npy', 'rb') as f:
npz = np.load(f)
idxs[skip].append(npz)
self.path[skip].append(npz_path)
ids1 = reduce(intersected, [idxs[nums > self.min_filter_matches] for nums, idxs in zip(nums[self.skips[-1]], idxs[self.skips[-1]])])
continue1 = np.array([x in ids1[:, 0] for x in (ids1[:, 0] + self.skips[-1] * 1)])
ids2 = reduce(intersected, idxs[self.skips[-2]])
continue2 = np.array([x in ids2[:, 0] for x in ids1[:, 0]])
continue2 = continue2 & np.array([x in ids2[:, 0] for x in (ids1[:, 0] + self.skips[-2] * 1)])
ids3 = reduce(intersected, idxs[self.skips[-3]])
continue3 = np.array([x in ids3[:, 0] for x in ids1[:, 0]])
continue3 = continue3 & np.array([x in ids3[:, 0] for x in (ids1[:, 0] + self.skips[-3] * 1)])
continue3 = continue3 & np.array([x in ids3[:, 0] for x in (ids1[:, 0] + self.skips[-3] * 2)])
continue3 = continue3 & np.array([x in ids3[:, 0] for x in (ids1[:, 0] + self.skips[-3] * 3)])
continues = continue1 & continue2 & continue3
ids = ids1[continues]
pair_ids = np.array(list(zip(ids[:, 0], np.clip(ids[:, 0]+self.step*self.skips[-1], a_min=ids[0, 0], a_max=ids[-1, 1])))) if self.step > 0 else ids
pair_ids = pair_ids[(pair_ids[:, 1] - pair_ids[:, 0]) >= self.skips[-1]]
else:
pair_ids = np.array([tuple(map(int, x.split('.npy')[0].split('_'))) for x in os.listdir(self.pproot) if x.endswith('.npy')])
if (max_samples > 0) and (len(pair_ids) > max_samples):
random_state = random.getstate()
np_random_state = np.random.get_state()
random.seed(3407)
np.random.seed(3407)
pair_ids = pair_ids[sorted(np.random.randint(len(pair_ids), size=max_samples))]
random.setstate(random_state)
np.random.set_state(np_random_state)
# remove unvalid pairs from self.pproot/bad_pairs.txt
pair_ids = set(map(tuple, pair_ids.tolist()))
if self.propagating:
assert not exists(join(self.pproot, 'bad_pairs.txt'))
if exists(join(self.pproot, 'bad_pairs.txt')):
with open(join(self.pproot, 'bad_pairs.txt'), 'r') as f:
unvalid_pairs = set([tuple(map(int, line.split())) for line in f.readlines()])
self.unvalid_pairs_num = len(unvalid_pairs) if not self.propagating else 'N/A'
pair_ids = pair_ids - unvalid_pairs
self.valid_pairs_num = len(pair_ids) if not self.propagating else 'N/A'
self.pair_ids = list(map(list, pair_ids)) # List[List[int, int]]
# parameters for image resizing, padding and depthmap padding
if mode == 'train': assert max_resize is not None
self.df = df
self.max_resize = max_resize
self.padding = padding
# for training LoFTR
self.augment_fn = augment_fn if mode == 'train' else None
def __len__(self):
return len(self.pair_ids)
def propagate(self, idx0, idx1, skips):
"""
Args:
idx0: (int) index of the first frame
idx1: (int) index of the second frame
skips: (List)
Returns:
"""
skip = skips[-1] # 40
indices = [skip * (i + 1) + idx0 for i in range((idx1 - idx0) // skip)]
if (not indices) or (idx0 != indices[0]): indices = [idx0] + indices
if idx1 != indices[-1]: indices = indices + [idx1]
indices = list(zip(indices[:-1], indices[1:]))
# [(N', 4), (N'', 4), ...]
labels = []
ids = [idx0]
while indices:
pair = indices.pop(0) # (tuple)
if pair[0] == pair[1]: break
label = []
if (pair[-1] - pair[0]) == skip:
tmp = self.dump(skip, pair)
if len(tmp) > 0: label.append(tmp) # (ndarray) (N, 4)
if skips[:-1]:
_label_, id0, id1 = self.propagate(pair[0], pair[1], skips[:-1])
if (id0, id1) == pair: label.append(_label_) # (ndarray) (M, 4)
if label:
label = np.concatenate(label, axis=0) # (ndarray) (N+M, 4)
labels.append(label)
ids += [pair[1]]
if len(labels) > 1:
_labels_ = self.link(labels[0], labels[1])
if _labels_ is not None:
labels = [_labels_]
ids = [ids[0], ids[-1]]
else:
labels.pop(-1)
ids.pop(-1)
indices = [(pair[0], pair[1]-skips[0])]
if len(labels) == 1 and len(ids) == 2:
return labels[0], ids[0], ids[-1]
else:
return None, None, None
def link(self, label0, label1):
"""
Args:
label0: (ndarray) N x 4
label1: (ndarray) M x 4
Returns: (ndarray) (N', 4)
"""
# get keypoints in left, middle and right frame
left_t0 = label0[:, :2] # (N, 2)
mid_t0 = label0[:, 2:] # (N, 2)
mid_t1 = label1[:, :2] # (M, 2)
right_t1 = label1[:, 2:] # (M, 2)
mid0_table = create_table(mid_t0[:, 0], mid_t0[:, 1], self.pseudo_size[0])
mid1_table = create_table(mid_t1[:, 0], mid_t1[:, 1], self.pseudo_size[0])
keys = {*mid0_table} & {*mid1_table}
i = np.array([mid0_table[k] for k in keys])
j = np.array([mid1_table[k] for k in keys])
# remove repeat matches
ij = np.unique(np.vstack((i, j)), axis=1)
if ij.shape[1] < self.min_final_matches: return None
# get the new pseudo labels
pseudo_label = np.concatenate([left_t0[ij[0]], right_t1[ij[1]]], axis=1) # (N', 4)
return pseudo_label
def dump(self, skip, pair):
"""
Args:
skip:
pair:
Returns: pseudo_label (N, 4)
"""
labels = []
for path in self.path[skip]:
p = path / '{}.npy'.format(str(np.array(pair)))
if exists(p):
with open(p, 'rb') as f:
labels.append(np.load(f))
if len(labels) > 0: labels = np.concatenate(labels, axis=0).astype(np.float32) # (N, 4)
return labels
def __getitem__(self, idx):
idx0, idx1 = self.pair_ids[idx]
pppath = join(self.pproot, '{}_{}.npy'.format(idx0, idx1))
if self.propagating and exists(pppath):
return None
# check propagation
if not self.propagating:
assert exists(pppath), f'{pppath} does not exist'
if not exists(pppath):
pseudo_label, idx0, idx1 = self.propagate(idx0, idx1, self.skips)
if idx1 - idx0 == self.skips[-1]:
pseudo_label, idx0, idx1 = self.propagate(idx0, idx1, self.skips[:-1])
if idx1 - idx0 == self.skips[-2]:
pseudo_label, idx0, idx1 = self.propagate(idx0, idx1, self.skips[:-2])
if pseudo_label is None:
_idx0_, _idx1_ = self.pair_ids[idx]
with open(join(self.pproot, 'bad_pairs.txt'), 'a') as f:
f.write('{} {}\n'.format(_idx0_, _idx1_))
return None
_, mask = cv2.findFundamentalMat(pseudo_label[:, :2], pseudo_label[:, 2:], cv2.USAC_MAGSAC, ransacReprojThreshold=1.0, confidence=0.999999, maxIters=1000)
mask = mask.ravel() > 0
pseudo_label = pseudo_label[mask]
if len(pseudo_label) < 64 or (idx1 - idx0) == self.skips[-3]:
_idx0_, _idx1_ = self.pair_ids[idx]
with open(join(self.pproot, 'bad_pairs.txt'), 'a') as f:
f.write('{} {}\n'.format(_idx0_, _idx1_))
return None
else:
with open(pppath, 'wb') as f:
np.save(f, np.concatenate((np.array([[idx0, idx1, idx0, idx1]]).astype(np.float32), pseudo_label), axis=0))
else:
with open(pppath, 'rb') as f:
pseudo_label = np.load(f)
idx0, idx1 = pseudo_label[0].astype(np.int64)[:2].tolist()
pseudo_label = pseudo_label[1:]
if self.propagating:
return None
pseudo_label *= (np.array(self.frame_size * 2) / np.array(self.pseudo_size * 2))[None]
# get image
img_path0 = join(self.image_root, '{}.png'.format(idx0))
color0 = cv2.imread(img_path0)
img_path1 = join(self.image_root, '{}.png'.format(idx1))
color1 = cv2.imread(img_path1)
width0, height0 = self.frame_size
width1, height1 = self.frame_size
left_upper_cornor = pseudo_label[:, :2].min(axis=0)
left_low_corner = pseudo_label[:, :2].max(axis=0)
left_corner = np.concatenate([left_upper_cornor, left_low_corner], axis=0)
right_upper_cornor = pseudo_label[:, 2:].min(axis=0)
right_low_corner = pseudo_label[:, 2:].max(axis=0)
right_corner = np.concatenate([right_upper_cornor, right_low_corner], axis=0)
# Prepare variables
image0, color0, scale0, rands0, offset0, hlip0, vflip0, resize0, mask0 = read_images(
None, self.max_resize, self.df, self.padding,
np.random.choice([self.augment_fn, None], p=[0.5, 0.5]),
aug_prob=1.0, is_left=True,
upper_cornor=left_corner,
read_size=self.frame_size, image=color0)
image1, color1, scale1, rands1, offset1, hlip1, vflip1, resize1, mask1 = read_images(
None, self.max_resize, self.df, self.padding,
np.random.choice([self.augment_fn, None], p=[0.5, 0.5]),
aug_prob=1.0, is_left=False,
upper_cornor=right_corner,
read_size=self.frame_size, image=color1)
# warp keypoints by scale, offset and hlip
pseudo_label = torch.tensor(pseudo_label, dtype=torch.float)
left = (pseudo_label[:, :2] / scale0[None] - offset0[None])
left[:, 0] = resize0[1] - 1 - left[:, 0] if hlip0 else left[:, 0]
left[:, 1] = resize0[0] - 1 - left[:, 1] if vflip0 else left[:, 1]
right = (pseudo_label[:, 2:] / scale1[None] - offset1[None])
right[:, 0] = resize1[1] - 1 - right[:, 0] if hlip1 else right[:, 0]
right[:, 1] = resize1[0] - 1 - right[:, 1] if vflip1 else right[:, 1]
mask = (left[:, 0] >= 0) & (left[:, 0]*self.scale <= (resize0[1]*self.scale - 1)) & \
(left[:, 1] >= 0) & (left[:, 1]*self.scale <= (resize0[0]*self.scale - 1)) & \
(right[:, 0] >= 0) & (right[:, 0]*self.scale <= (resize1[1]*self.scale - 1)) & \
(right[:, 1] >= 0) & (right[:, 1]*self.scale <= (resize1[0]*self.scale - 1))
left, right = left[mask], right[mask]
pseudo_label = torch.cat([left, right], dim=1)
pseudo_label = torch.unique(pseudo_label, dim=0)
fix_pseudo_label = torch.zeros(self.fix_matches, 4, dtype=pseudo_label.dtype)
fix_pseudo_label[:len(pseudo_label)] = pseudo_label
# read image size
imsize0 = torch.tensor([height0, width0], dtype=torch.long)
imsize1 = torch.tensor([height1, width1], dtype=torch.long)
resize0 = torch.tensor(resize0, dtype=torch.long)
resize1 = torch.tensor(resize1, dtype=torch.long)
data = {
# image 0
'image0': image0,
'color0': color0,
'imsize0': imsize0,
'offset0': offset0,
'resize0': resize0,
'depth0': torch.ones((1600, 1600), dtype=torch.float),
'hflip0': hlip0,
'vflip0': vflip0,
# image 1
'image1': image1,
'color1': color1,
'imsize1': imsize1,
'offset1': offset1,
'resize1': resize1,
'depth1': torch.ones((1600, 1600), dtype=torch.float),
'hflip1': hlip1,
'vflip1': vflip1,
# image transform
'pseudo_labels': fix_pseudo_label,
'gt': False,
'zs': True,
# image transform
'T_0to1': torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=torch.float),
'T_1to0': torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=torch.float),
'K0': torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=torch.float),
'K1': torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=torch.float),
# pair information
'scale0': scale0 / scale0,
'scale1': scale1 / scale1,
'rands0': rands0,
'rands1': rands1,
'dataset_name': 'WALK',
'scene_id': '{:30}'.format(self.scene_id[:min(30, len(self.scene_id)-1)]),
'pair_id': f'{idx0}-{idx1}',
'pair_names': ('{}.png'.format(idx0),
'{}.png'.format(idx1)),
'covisible0': covision(pseudo_label[:, :2], resize0).item(),
'covisible1': covision(pseudo_label[:, 2:], resize1).item(),
}
item = super(WALKDataset, self).__getitem__(idx)
item.update(data)
data = item
if mask0 is not None:
if self.scale:
# noinspection PyArgumentList
[ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(),
scale_factor=self.scale,
mode='nearest',
recompute_scale_factor=False)[0].bool()
data.update({'mask0': ts_mask_0, 'mask1': ts_mask_1})
data.update({'mask0_i': mask0, 'mask1_i': mask1})
return data
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('seq_names', type=str, nargs='+')
args = parser.parse_args()
train_cfg = cfg.DATASET.TRAIN
base_input = {
'df': 8,
'mode': 'train',
'augment_fn': None,
'max_resize': [1280, 720],
'padding': cfg.DATASET.TRAIN.PADDING,
'max_samples': cfg.DATASET.TRAIN.MAX_SAMPLES,
'min_overlap_score': cfg.DATASET.TRAIN.MIN_OVERLAP_SCORE,
'max_overlap_score': cfg.DATASET.TRAIN.MAX_OVERLAP_SCORE
}
cfg_input = {
k: getattr(train_cfg, k)
for k in [
'DATA_ROOT', 'NPZ_ROOT', 'STEP', 'PIX_THR', 'FIX_MATCHES', 'SOURCE_ROOT',
'MAX_CANDIDATE_MATCHES', 'MIN_FINAL_MATCHES', 'MIN_FILTER_MATCHES',
'VIDEO_IMAGE_ROOT', 'PROPAGATE_ROOT', 'PSEUDO_LABELS'
]
}
if os.path.isfile(args.seq_names[0]):
with open(args.seq_names[0], 'r') as f:
seq_names = [line.strip() for line in f.readlines()]
else:
seq_names = args.seq_names
for seq_name in seq_names:
input_ = {
**base_input,
**cfg_input,
'root_dir': cfg_input['DATA_ROOT'],
'npz_root': cfg_input['NPZ_ROOT'],
'seq_name': seq_name
}
dataset = WALKDataset(**input_)
random.seed(3407)
np.random.seed(3407)
samples = list(range(len(dataset)))
num = 10
samples = random.sample(samples, num)
for idx_ in tqdm(samples[:num], ncols=80, bar_format="{l_bar}{bar:3}{r_bar}", total=num,
desc=f'[ {seq_name[:min(10, len(seq_name)-1)]:<10} ] [ {dataset.valid_pairs_num:<5} / {dataset.valid_pairs_num+dataset.unvalid_pairs_num:<5} ]',):
data_ = dataset[idx_]
if data_ is None: continue
pseudo_labels_ = data_['pseudo_labels']
mask_ = pseudo_labels_.sum(dim=1) > 0
pseudo_label_ = pseudo_labels_[mask_].cpu().numpy()
data_['mkpts0_f'] = pseudo_label_[:, :2]
data_['mkpts1_f'] = pseudo_label_[:, 2:]
data_['hw0_i'] = data_['image0'].shape[-2:]
data_['hw1_i'] = data_['image1'].shape[-2:]
data_['image0'] = data_['image0'][None]
data_['image1'] = data_['image1'][None]
data_['color0'] = data_['color0'][None]
data_['color1'] = data_['color1'][None]
idx0_, idx1_ = data_['pair_id'].split('-')
idx0_, idx1_ = map(int, [idx0_, idx1_])
out = fast_make_matching_robust_fitting_figure(data_, transpose=True)
save_dir = Path('dump/walk') / seq_name
if not exists(save_dir): save_dir.mkdir(parents=True, exist_ok=True)
cv2.imwrite(join(save_dir, '{:8d} [{}] {:8d} {:3d}.png'.format(
idx0_,
datetime.utcnow().strftime('%Y-%m-%d %H-%M-%S %f')[:-3],
idx1_,
idx1_ - idx0_
)), cv2.cvtColor(out, cv2.COLOR_RGB2BGR))