File size: 21,549 Bytes
499e141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import os
import shutil
from tqdm import tqdm
import numpy as np
import h5py
import torch
from pathlib import Path
from typing import Dict, Iterable, Optional, List, Tuple, Union, Set
import pprint
import argparse
import torchvision.transforms.functional as F
from types import SimpleNamespace
from collections import defaultdict
from scipy.spatial import KDTree
from collections import Counter
from itertools import chain

from . import matchers, logger
from .utils.base_model import dynamic_load
from .utils.parsers import parse_retrieval, names_to_pair
from .match_features import find_unique_new_pairs
from .extract_features import read_image, resize_image
from .utils.io import list_h5_names

confs = {
    'gim_dkm': {
        'output': 'matches-gim',
        'model': {
            'name': 'dkm',
            'weights': 'gim_dkm_100h.ckpt'
        },
        'preprocessing': {
            'grayscale': False,
            'resize_max': None,
            'dfactor': 1
        },
        'max_error': 2,  # max error for assigned keypoints (in px)
        'cell_size': 8,  # size of quantization patch (max 1 kp/patch)
    },
}


def to_cpts(kpts, ps):
    if ps > 0.0:
        kpts = np.round(np.round((kpts + 0.5) / ps) * ps - 0.5, 2)
    return [tuple(cpt) for cpt in kpts]


def assign_keypoints(kpts: np.ndarray,
                     other_cpts: Union[List[Tuple], np.ndarray],
                     max_error: float,
                     update: bool = False,
                     ref_bins: Optional[List[Counter]] = None,
                     scores: Optional[np.ndarray] = None,
                     cell_size: Optional[int] = None):
    if not update:
        if len(other_cpts) == 0: return np.array([], dtype=np.int64)
        # Without update this is just a NN search
        dist, kpt_ids = KDTree(np.array(other_cpts)).query(kpts)
        valid = (dist <= max_error)
        kpt_ids[~valid] = -1
        return kpt_ids
    else:
        ps = cell_size if cell_size is not None else max_error
        ps = max(ps, max_error)
        # With update we quantize and bin (optionally)
        assert isinstance(other_cpts, list)
        kpt_ids = []
        cpts = to_cpts(kpts, ps)
        bpts = to_cpts(kpts, int(max_error))
        cp_to_id = {val: i for i, val in enumerate(other_cpts)}
        for i, (cpt, bpt) in enumerate(zip(cpts, bpts)):
            try:
                kid = cp_to_id[cpt]
            except KeyError:
                kid = len(cp_to_id)
                cp_to_id[cpt] = kid
                other_cpts.append(cpt)
                if ref_bins is not None:
                    ref_bins.append(Counter())
            if ref_bins is not None:
                score = scores[i] if scores is not None else 1
                ref_bins[cp_to_id[cpt]][bpt] += score
            kpt_ids.append(kid)
        return np.array(kpt_ids)


def get_grouped_ids(array):
    # Group array indices based on its values
    # all duplicates are grouped as a set
    idx_sort = np.argsort(array)
    sorted_array = array[idx_sort]
    _, ids, _ = np.unique(sorted_array, return_counts=True,
                          return_index=True)
    res = np.split(idx_sort, ids[1:])
    return res


def get_unique_matches(match_ids, scores):
    if len(match_ids.shape) == 1:
        return [0]

    isets1 = get_grouped_ids(match_ids[:, 0])
    isets2 = get_grouped_ids(match_ids[:, 1])
    uid1s = [ids[scores[ids].argmax()] for ids in isets1 if len(ids) > 0]
    uid2s = [ids[scores[ids].argmax()] for ids in isets2 if len(ids) > 0]
    uids = list(set(uid1s).intersection(uid2s))
    return match_ids[uids], scores[uids]


def matches_to_matches0(matches, scores):
    if len(matches) == 0:
        return np.zeros(0, dtype=np.int32), np.zeros(0, dtype=np.float16)
    n_kps0 = np.max(matches[:, 0]) + 1
    matches0 = -np.ones((n_kps0,))
    scores0 = np.zeros((n_kps0,))
    matches0[matches[:, 0]] = matches[:, 1]
    scores0[matches[:, 0]] = scores
    return matches0.astype(np.int32), scores0.astype(np.float16)


def kpids_to_matches0(kpt_ids0, kpt_ids1, scores):
    valid = (kpt_ids0 != -1) & (kpt_ids1 != -1)
    matches = np.dstack([kpt_ids0[valid], kpt_ids1[valid]])
    matches = matches.reshape(-1, 2)
    scores = scores[valid]

    # Remove n-to-1 matches
    matches, scores = get_unique_matches(matches, scores)
    return matches_to_matches0(matches, scores)


def scale_keypoints(kpts, scale):
    if np.any(scale != 1.0):
        kpts *= kpts.new_tensor(scale)
    return kpts


class ImagePairDataset(torch.utils.data.Dataset):
    default_conf = {
        'grayscale': True,
        'resize_max': 1024,
        'dfactor': 8,
        'cache_images': False,
    }

    def __init__(self, image_dir, conf, pairs):
        self.image_dir = image_dir
        self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
        self.pairs = sorted(pairs) if pairs else pairs
        if self.conf.cache_images:
            image_names = set(sum(pairs, ()))  # unique image names in pairs
            logger.info(
                f'Loading and caching {len(image_names)} unique images.')
            self.images = {}
            self.scales = {}
            for name in tqdm(image_names):
                image = read_image(self.image_dir / name, self.conf.grayscale)
                self.images[name], self.scales[name] = self.preprocess(image)

    def preprocess(self, image: np.ndarray):
        image = image.astype(np.float32, copy=False)
        size = image.shape[:2][::-1]
        scale = np.array([1.0, 1.0])

        if self.conf.resize_max:
            scale = self.conf.resize_max / max(size)
            if scale < 1.0:
                size_new = tuple(int(round(x*scale)) for x in size)
                image = resize_image(image, size_new, 'cv2_area')
                scale = np.array(size) / np.array(size_new)

        if self.conf.grayscale:
            assert image.ndim == 2, image.shape
            image = image[None]
        else:
            image = image.transpose((2, 0, 1))  # HxWxC to CxHxW
        image = torch.from_numpy(image / 255.0).float()

        # assure that the size is divisible by dfactor
        size_new = tuple(map(
                lambda x: int(x // self.conf.dfactor * self.conf.dfactor),
                image.shape[-2:]))
        image = F.resize(image, size=size_new)
        scale = np.array(size) / np.array(size_new)[::-1]
        return image, scale

    def __len__(self):
        return len(self.pairs)

    def __getitem__(self, idx):
        name0, name1 = self.pairs[idx]
        if self.conf.cache_images:
            image0, scale0 = self.images[name0], self.scales[name0]
            image1, scale1 = self.images[name1], self.scales[name1]
        else:
            image0 = read_image(self.image_dir / name0, self.conf.grayscale)
            image1 = read_image(self.image_dir / name1, self.conf.grayscale)
            image0, scale0 = self.preprocess(image0)
            image1, scale1 = self.preprocess(image1)
        return image0, image1, scale0, scale1, name0, name1


@torch.no_grad()
def match_dense(conf: Dict,
                pairs: List[Tuple[str, str]],
                image_dir: Path,
                match_path: Path,  # out
                existing_refs: Optional[List] = []):

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    Model = dynamic_load(matchers, conf['model']['name'])
    model = Model(conf['model']).eval().to(device)

    dataset = ImagePairDataset(image_dir, conf["preprocessing"], pairs)
    loader = torch.utils.data.DataLoader(
            dataset, num_workers=16, batch_size=1, shuffle=False)

    logger.info("Performing dense matching...")
    with h5py.File(str(match_path), 'a') as fd:
        for data in tqdm(loader, smoothing=.1):
            # load image-pair data
            image0, image1, scale0, scale1, (name0,), (name1,) = data
            scale0, scale1 = scale0[0].numpy(), scale1[0].numpy()
            image0, image1 = image0.to(device), image1.to(device)

            # match semi-dense
            # for consistency with pairs_from_*: refine kpts of image0
            if name0 in existing_refs:
                # special case: flip to enable refinement in query image
                pred = model({'image0': image1, 'image1': image0, 'name0': name1, 'name1': name0})
                pred = {**pred,
                        'keypoints0': pred['keypoints1'],
                        'keypoints1': pred['keypoints0']}
            else:
                # usual case
                # # 在 image1 上 grid sample 关键点, 在 image0 上预测 refine 关键点
                pred = model({'image0': image0, 'image1': image1, 'name0': name0, 'name1': name1})

            # Rescale keypoints and move to cpu
            kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
            kpts0 = scale_keypoints(kpts0 + 0.5, scale0) - 0.5
            kpts1 = scale_keypoints(kpts1 + 0.5, scale1) - 0.5
            kpts0 = kpts0.cpu().numpy()
            kpts1 = kpts1.cpu().numpy()
            scores = pred['scores'].cpu().numpy()

            # Write matches and matching scores in hloc format
            pair = names_to_pair(name0, name1)
            if pair in fd:
                del fd[pair]
            grp = fd.create_group(pair)

            # Write dense matching output
            grp.create_dataset('keypoints0', data=kpts0)
            grp.create_dataset('keypoints1', data=kpts1)
            grp.create_dataset('scores', data=scores)
    del model, loader


# default: quantize all!
def load_keypoints(conf: Dict,
                   feature_paths_refs: List[Path],
                   quantize: Optional[set] = None):
    name2ref = {n: i for i, p in enumerate(feature_paths_refs)
                for n in list_h5_names(p)}

    existing_refs = set(name2ref.keys())
    if quantize is None:
        quantize = existing_refs  # quantize all
    if len(existing_refs) > 0:
        logger.info(f'Loading keypoints from {len(existing_refs)} images.')

    # Load query keypoints
    cpdict = defaultdict(list)
    bindict = defaultdict(list)
    for name in existing_refs:
        with h5py.File(str(feature_paths_refs[name2ref[name]]), 'r') as fd:
            kps = fd[name]['keypoints'].__array__()
            if name not in quantize:
                cpdict[name] = kps
            else:
                if 'scores' in fd[name].keys():
                    kp_scores = fd[name]['scores'].__array__()
                else:
                    # we set the score to 1.0 if not provided
                    # increase for more weight on reference keypoints for
                    # stronger anchoring
                    kp_scores = \
                        [1.0 for _ in range(kps.shape[0])]
                # bin existing keypoints of reference images for association
                assign_keypoints(
                    kps, cpdict[name], conf['max_error'], True, bindict[name],
                    kp_scores, conf['cell_size'])
    return cpdict, bindict


def aggregate_matches(
        conf: Dict,
        pairs: List[Tuple[str, str]],
        match_path: Path,
        feature_path: Path,
        required_queries: Optional[Set[str]] = None,
        max_kps: Optional[int] = None,
        cpdict: Dict[str, Iterable] = defaultdict(list),
        bindict: Dict[str, List[Counter]] = defaultdict(list)):
    if required_queries is None:
        required_queries = set(sum(pairs, ()))
        # default: do not overwrite existing features in feature_path!
        required_queries -= set(list_h5_names(feature_path))

    # if an entry in cpdict is provided as np.ndarray we assume it is fixed
    required_queries -= set(
        [k for k, v in cpdict.items() if isinstance(v, np.ndarray)])

    # sort pairs for reduced RAM
    pairs_per_q = Counter(list(chain(*pairs)))
    pairs_score = [min(pairs_per_q[i], pairs_per_q[j]) for i, j in pairs]
    pairs = [p for _, p in sorted(zip(pairs_score, pairs))]

    if len(required_queries) > 0:
        logger.info(f'Aggregating keypoints for {len(required_queries)} images.')
    n_kps = 0
    with h5py.File(str(match_path), 'a') as fd:
        for name0, name1 in tqdm(pairs, smoothing=.1):
            pair = names_to_pair(name0, name1)
            grp = fd[pair]
            kpts0 = grp['keypoints0'].__array__()
            kpts1 = grp['keypoints1'].__array__()
            scores = grp['scores'].__array__()

            # Aggregate local features
            update0 = name0 in required_queries
            update1 = name1 in required_queries

            # in localization we do not want to bin the query kp
            # assumes that the query is name0!
            if update0 and not update1 and max_kps is None:
                max_error0 = cell_size0 = 0.0
            else:
                max_error0 = conf['max_error']
                cell_size0 = conf['cell_size']

            # Get match ids and extend query keypoints (cpdict)
            mkp_ids0 = assign_keypoints(kpts0, cpdict[name0], max_error0,
                                        update0, bindict[name0], scores,
                                        cell_size0)
            mkp_ids1 = assign_keypoints(kpts1, cpdict[name1], conf['max_error'],
                                        update1, bindict[name1], scores,
                                        conf['cell_size'])

            # Build matches from assignments
            matches0, scores0 = kpids_to_matches0(mkp_ids0, mkp_ids1, scores)

            assert kpts0.shape[0] == scores.shape[0]
            # del grp['matches0'], grp['matching_scores0']
            grp.create_dataset('matches0', data=matches0)
            grp.create_dataset('matching_scores0', data=scores0)

            # Convert bins to kps if finished, and store them
            for name in (name0, name1):
                pairs_per_q[name] -= 1
                if pairs_per_q[name] > 0 or name not in required_queries:
                    continue
                kp_score = [c.most_common(1)[0][1] for c in bindict[name]]
                cpdict[name] = [c.most_common(1)[0][0] for c in bindict[name]]
                cpdict[name] = np.array(cpdict[name], dtype=np.float32)

                # Select top-k query kps by score (reassign matches later)
                if max_kps:
                    top_k = min(max_kps, cpdict[name].shape[0])
                    top_k = np.argsort(kp_score)[::-1][:top_k]
                    cpdict[name] = cpdict[name][top_k]
                    kp_score = np.array(kp_score)[top_k]

                # Write query keypoints
                with h5py.File(feature_path, 'a') as kfd:
                    if name in kfd:
                        del kfd[name]
                    kgrp = kfd.create_group(name)
                    kgrp.create_dataset('keypoints', data=cpdict[name])
                    kgrp.create_dataset('score', data=kp_score)
                    n_kps += cpdict[name].shape[0]
                del bindict[name]

    if len(required_queries) > 0:
        avg_kp_per_image = round(n_kps / len(required_queries), 1)
        logger.info(f'Finished assignment, found {avg_kp_per_image} '
                    f'keypoints/image (avg.), total {n_kps}.')
    return cpdict


def assign_matches(
        pairs: List[Tuple[str, str]],
        match_path: Path,
        keypoints: Union[List[Path], Dict[str, np.array]],
        max_error: float):
    if isinstance(keypoints, list):
        keypoints = load_keypoints({}, keypoints, quantize=set([]))
    assert len(set(sum(pairs, ())) - set(keypoints.keys())) == 0
    with h5py.File(str(match_path), 'a') as fd:
        for name0, name1 in tqdm(pairs):
            pair = names_to_pair(name0, name1)
            grp = fd[pair]
            kpts0 = grp['keypoints0'].__array__()
            kpts1 = grp['keypoints1'].__array__()
            scores = grp['scores'].__array__()

            # NN search across cell boundaries
            mkp_ids0 = assign_keypoints(kpts0, keypoints[name0], max_error)
            mkp_ids1 = assign_keypoints(kpts1, keypoints[name1], max_error)

            matches0, scores0 = kpids_to_matches0(mkp_ids0, mkp_ids1,
                                                  scores)

            # overwrite matches0 and matching_scores0
            del grp['matches0'], grp['matching_scores0']
            grp.create_dataset('matches0', data=matches0)
            grp.create_dataset('matching_scores0', data=scores0)


@torch.no_grad()
def match_and_assign(conf: Dict,
                     pairs_path: Path,
                     image_dir: Path,
                     match_path: Path,  # out
                     feature_path_q: Path,  # out
                     feature_paths_refs: Optional[List[Path]] = [],
                     max_kps: Optional[int] = 8192,
                     overwrite: bool = False) -> Path:
    for path in feature_paths_refs:
        if not path.exists():
            raise FileNotFoundError(f'Reference feature file {path}.')
    pairs = parse_retrieval(pairs_path)
    pairs = [(q, r) for q, rs in pairs.items() for r in rs]
    pairs = find_unique_new_pairs(pairs, None if overwrite else match_path)
    required_queries = set(sum(pairs, ()))

    name2ref = {n: i for i, p in enumerate(feature_paths_refs)
                for n in list_h5_names(p)}
    existing_refs = required_queries.intersection(set(name2ref.keys()))

    # images which require feature extraction
    required_queries = required_queries - existing_refs

    if feature_path_q.exists():
        existing_queries = set(list_h5_names(feature_path_q))
        feature_paths_refs.append(feature_path_q)
        existing_refs = set.union(existing_refs, existing_queries)
        if not overwrite:
            required_queries = required_queries - existing_queries

    if len(pairs) == 0 and len(required_queries) == 0:
        logger.info("All pairs exist. Skipping dense matching.")
        return

    # extract semi-dense matches
    parts = list(match_path.parts)
    match_cache_base = os.sep.join(parts[:-1] + ['cache'])
    match_cache_path = os.path.join(match_cache_base, parts[-1])
    if not os.path.exists(match_cache_path):
        match_dense(conf, pairs, image_dir, match_path,
                    existing_refs=existing_refs)
        if not os.path.exists(match_cache_base): os.mkdir(match_cache_base)
        shutil.copy(str(match_path), str(match_cache_path))
    else:
        shutil.copy(str(match_cache_path), str(match_path))

    logger.info("Assigning matches...")

    # Pre-load existing keypoints
    cpdict, bindict = load_keypoints(
        conf, feature_paths_refs,
        quantize=required_queries)

    # Reassign matches by aggregation
    cpdict = aggregate_matches(
        conf, pairs, match_path, feature_path=feature_path_q,
        required_queries=required_queries, max_kps=max_kps, cpdict=cpdict,
        bindict=bindict)

    # Invalidate matches that are far from selected bin by reassignment
    if max_kps is not None:
        logger.info(f'Reassign matches with max_error={conf["max_error"]}.')
        assign_matches(pairs, match_path, cpdict,
                       max_error=conf['max_error'])


@torch.no_grad()
def main(conf: Dict,
         pairs: Path,
         image_dir: Path,
         export_dir: Optional[Path] = None,
         matches: Optional[Path] = None,  # out
         features: Optional[Path] = None,  # out
         features_ref: Optional[Path] = None,
         max_kps: Optional[int] = 8192,
         overwrite: bool = False) -> Path:
    logger.info('Extracting semi-dense features with configuration:'
                f'\n{pprint.pformat(conf)}')

    if features is None:
        features = 'feats_'

    if isinstance(features, Path):
        features_q = features
        if matches is None:
            raise ValueError('Either provide both features and matches as Path'
                             ' or both as names.')
    else:
        if export_dir is None:
            raise ValueError('Provide an export_dir if features and matches'
                             f' are not file paths: {features}, {matches}.')
        features_q = Path(export_dir,
                          f'{features}{conf["output"]}.h5')
        if matches is None:
            matches = Path(
                export_dir, f'{conf["output"]}_{pairs.stem}.h5')

    if features_ref is None:
        features_ref = []
    elif isinstance(features_ref, list):
        features_ref = list(features_ref)
    elif isinstance(features_ref, Path):
        features_ref = [features_ref]
    else:
        raise TypeError(str(features_ref))

    match_and_assign(conf, pairs, image_dir, matches,
                     features_q, features_ref,
                     max_kps, overwrite)

    return features_q, matches


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--pairs', type=Path, required=True)
    parser.add_argument('--image_dir', type=Path, required=True)
    parser.add_argument('--export_dir', type=Path, required=True)
    parser.add_argument('--matches', type=Path,
                        default=confs['loftr']['output'])
    parser.add_argument('--features', type=str,
                        default='feats_' + confs['loftr']['output'])
    parser.add_argument('--conf', type=str, default='loftr',
                        choices=list(confs.keys()))
    args = parser.parse_args()
    main(confs[args.conf], args.pairs, args.image_dir, args.export_dir,
         args.matches, args.features)