Spaces:
Running
Running
File size: 11,435 Bytes
499e141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
from math import log
from loguru import logger
import torch
import torch.nn.functional as F
from einops import repeat
from kornia.utils import create_meshgrid
from einops.einops import rearrange
from .geometry import warp_kpts, warp_kpts_fine
from kornia.geometry.epipolar import fundamental_from_projections, normalize_transformation
############## β Coarse-Level supervision β ##############
@torch.no_grad()
def mask_pts_at_padded_regions(grid_pt, mask):
"""For megadepth dataset, zero-padding exists in images"""
mask = repeat(mask, 'n h w -> n (h w) c', c=2)
grid_pt[~mask.bool()] = 0
return grid_pt
@torch.no_grad()
def spvs_coarse(data, config):
"""
Update:
data (dict): {
"conf_matrix_gt": [N, hw0, hw1],
'spv_b_ids': [M]
'spv_i_ids': [M]
'spv_j_ids': [M]
'spv_w_pt0_i': [N, hw0, 2], in original image resolution
'spv_pt1_i': [N, hw1, 2], in original image resolution
}
NOTE:
- for scannet dataset, there're 3 kinds of resolution {i, c, f}
- for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f}
"""
# 1. misc
device = data['image0'].device
N, _, H0, W0 = data['image0'].shape
_, _, H1, W1 = data['image1'].shape
scale = config['XOFTR']['RESOLUTION'][0]
scale0 = scale * data['scale0'][:, None] if 'scale0' in data else scale
scale1 = scale * data['scale1'][:, None] if 'scale1' in data else scale
h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1])
# 2. warp grids
# create kpts in meshgrid and resize them to image resolution
grid_pt0_c = create_meshgrid(h0, w0, False, device).reshape(1, h0*w0, 2).repeat(N, 1, 1) # [N, hw, 2]
grid_pt0_i = scale0 * grid_pt0_c
grid_pt1_c = create_meshgrid(h1, w1, False, device).reshape(1, h1*w1, 2).repeat(N, 1, 1)
grid_pt1_i = scale1 * grid_pt1_c
# mask padded region to (0, 0), so no need to manually mask conf_matrix_gt
if 'mask0' in data:
grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data['mask0'])
grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data['mask1'])
# warp kpts bi-directionally and resize them to coarse-level resolution
# (unhandled edge case: points with 0-depth will be warped to the left-up corner)
valid_mask0, w_pt0_i = warp_kpts(grid_pt0_i, data['depth0'], data['depth1'], data['T_0to1'], data['K0'], data['K1'])
valid_mask1, w_pt1_i = warp_kpts(grid_pt1_i, data['depth1'], data['depth0'], data['T_1to0'], data['K1'], data['K0'])
w_pt0_i[~valid_mask0] = 0
w_pt1_i[~valid_mask1] = 0
w_pt0_c = w_pt0_i / scale1
w_pt1_c = w_pt1_i / scale0
# 3. nearest neighbor
w_pt0_c_round = w_pt0_c[:, :, :].round().long()
nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1
w_pt1_c_round = w_pt1_c[:, :, :].round().long()
nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0
# corner case: out of boundary
def out_bound_mask(pt, w, h):
return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h)
nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0
nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0
arange_1 = torch.arange(h0*w0, device=device)[None].repeat(N, 1)
arange_0 = torch.arange(h0*w0, device=device)[None].repeat(N, 1)
arange_1[nearest_index1 == 0] = 0
arange_0[nearest_index0 == 0] = 0
arange_b = torch.arange(N, device=device).unsqueeze(1)
# 4. construct a gt conf_matrix
conf_matrix_gt = torch.zeros(N, h0*w0, h1*w1, device=device)
conf_matrix_gt[arange_b, arange_1, nearest_index1] = 1
conf_matrix_gt[arange_b, nearest_index0, arange_0] = 1
conf_matrix_gt[:, 0, 0] = False
b_ids, i_ids, j_ids = conf_matrix_gt.nonzero(as_tuple=True)
data.update({'conf_matrix_gt': conf_matrix_gt})
# 5. save coarse matches(gt) for training fine level
if len(b_ids) == 0:
logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}")
# this won't affect fine-level loss calculation
b_ids = torch.tensor([0], device=device)
i_ids = torch.tensor([0], device=device)
j_ids = torch.tensor([0], device=device)
data.update({
'spv_b_ids': b_ids,
'spv_i_ids': i_ids,
'spv_j_ids': j_ids
})
# 6. save intermediate results (for fast fine-level computation)
data.update({
'spv_w_pt0_i': w_pt0_i,
'spv_pt1_i': grid_pt1_i
})
def compute_supervision_coarse(data, config):
assert len(set(data['dataset_name'])) == 1, "Do not support mixed datasets training!"
data_source = data['dataset_name'][0]
if data_source.lower() in ['scannet', 'megadepth']:
spvs_coarse(data, config)
else:
raise ValueError(f'Unknown data source: {data_source}')
############## β Fine-Level supervision β ##############
def compute_supervision_fine(data, config):
data_source = data['dataset_name'][0]
if data_source.lower() in ['scannet', 'megadepth']:
spvs_fine(data, config)
else:
raise NotImplementedError
@torch.no_grad()
def create_2d_gaussian_kernel(kernel_size, sigma, device):
"""
Create a 2D Gaussian kernel.
Args:
kernel_size (int): Size of the kernel (both width and height).
sigma (float): Standard deviation of the Gaussian distribution.
Returns:
torch.Tensor: 2D Gaussian kernel.
"""
kernel = torch.arange(kernel_size, dtype=torch.float32, device=device) - (kernel_size - 1) / 2
kernel = torch.exp(-kernel**2 / (2 * sigma**2))
kernel = kernel / kernel.sum()
# Outer product to get a 2D kernel
kernel = torch.outer(kernel, kernel)
return kernel
@torch.no_grad()
def create_conf_prob(points, h0, w0, h1, w1, kernel_size = 5, sigma=1):
"""
Place a gaussian kernel in sim matrix for warped points
Args:
data (dict): {
points: (torch.Tensor): (N, L, 2), warped rounded key points
h0, w0, h1, w1: (int), windows sizes
kernel_size: (int), kernel size for the gaussian
sigma: (float), sigma value for gaussian
}
"""
B = points.shape[0]
impulses = torch.zeros(B, h0 * w0, h1, w1, device=points.device)
# Extract the row and column indices
row_indices = points[:, :, 1]
col_indices = points[:, :, 0]
# Set the corresponding locations in the target tensor to 1
impulses[torch.arange(B, device=points.device).view(B, 1, 1),
torch.arange(h0 * w0, device=points.device).view(1, h0 * w0, 1),
row_indices.unsqueeze(-1), col_indices.unsqueeze(-1)] = 1
# mask 0,0 point
impulses[:,:,0,0] = 0
# Create the Gaussian kernel
gaussian_kernel = create_2d_gaussian_kernel(kernel_size, sigma=sigma, device=points.device)
gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size)
# Create distributions at the points
conf_prob = F.conv2d(impulses.view(-1,1,h1,w1), gaussian_kernel, padding=kernel_size//2).view(-1, h0*w0, h1*w1)
return conf_prob
@torch.no_grad()
def spvs_fine(data, config):
"""
Args:
data (dict): {
'b_ids': [M]
'i_ids': [M]
'j_ids': [M]
}
Update:
data (dict): {
conf_matrix_f_gt: [N, W_f^2, W_f^2], in original image resolution
}
"""
# 1. misc
device = data['image0'].device
N, _, H0, W0 = data['image0'].shape
_, _, H1, W1 = data['image1'].shape
scale = config['XOFTR']['RESOLUTION'][1]
scale0 = scale * data['scale0'][:, None] if 'scale0' in data else scale
scale1 = scale * data['scale1'][:, None] if 'scale1' in data else scale
h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1])
scale_f_c = config['XOFTR']['RESOLUTION'][0] // config['XOFTR']['RESOLUTION'][1]
W_f = config['XOFTR']['FINE_WINDOW_SIZE']
# 2. get coarse prediction
b_ids, i_ids, j_ids = data['b_ids'], data['i_ids'], data['j_ids']
if len(b_ids) == 0:
data.update({"conf_matrix_f_gt": torch.zeros(1,W_f*W_f,W_f*W_f, device=device)})
return
# 2. warp grids
# create kpts in meshgrid and resize them to image resolution
grid_pt0_c = create_meshgrid(h0, w0, False, device).repeat(N, 1, 1, 1)#.reshape(1, h0*w0, 2).repeat(N, 1, 1) # [N, hw, 2]
grid_pt0_i = scale0[:,None,...] * grid_pt0_c
grid_pt1_c = create_meshgrid(h1, w1, False, device).repeat(N, 1, 1, 1)#.reshape(1, h1*w1, 2).repeat(N, 1, 1)
grid_pt1_i = scale1[:,None,...] * grid_pt1_c
# unfold (crop windows) all local windows
stride_f = data['hw0_f'][0] // data['hw0_c'][0]
grid_pt0_i = rearrange(grid_pt0_i, 'n h w c -> n c h w')
grid_pt0_i = F.unfold(grid_pt0_i, kernel_size=(W_f, W_f), stride=stride_f, padding=W_f//2)
grid_pt0_i = rearrange(grid_pt0_i, 'n (c ww) l -> n l ww c', ww=W_f**2)
grid_pt0_i = grid_pt0_i[b_ids, i_ids]
grid_pt1_i = rearrange(grid_pt1_i, 'n h w c -> n c h w')
grid_pt1_i = F.unfold(grid_pt1_i, kernel_size=(W_f, W_f), stride=stride_f, padding=W_f//2)
grid_pt1_i = rearrange(grid_pt1_i, 'n (c ww) l -> n l ww c', ww=W_f**2)
grid_pt1_i = grid_pt1_i[b_ids, j_ids]
# warp kpts bi-directionally and resize them to fine-level resolution
# (no depth consistency check
# (unhandled edge case: points with 0-depth will be warped to the left-up corner)
_, w_pt0_i = warp_kpts_fine(grid_pt0_i, data['depth0'], data['depth1'], data['T_0to1'], data['K0'], data['K1'], b_ids)
_, w_pt1_i = warp_kpts_fine(grid_pt1_i, data['depth1'], data['depth0'], data['T_1to0'], data['K1'], data['K0'], b_ids)
w_pt0_f = w_pt0_i / scale1[b_ids]
w_pt1_f = w_pt1_i / scale0[b_ids]
mkpts0_c_scaled_to_f = torch.stack(
[i_ids % data['hw0_c'][1], i_ids // data['hw0_c'][1]],
dim=1) * scale_f_c - W_f//2
mkpts1_c_scaled_to_f = torch.stack(
[j_ids % data['hw1_c'][1], j_ids // data['hw1_c'][1]],
dim=1) * scale_f_c - W_f//2
w_pt0_f = w_pt0_f - mkpts1_c_scaled_to_f[:,None,:]
w_pt1_f = w_pt1_f - mkpts0_c_scaled_to_f[:,None,:]
# 3. check if mutual nearest neighbor
w_pt0_f_round = w_pt0_f[:, :, :].round().long()
w_pt1_f_round = w_pt1_f[:, :, :].round().long()
M = w_pt0_f.shape[0]
nearest_index1 = w_pt0_f_round[..., 0] + w_pt0_f_round[..., 1] * W_f
nearest_index0 = w_pt1_f_round[..., 0] + w_pt1_f_round[..., 1] * W_f
# corner case: out of boundary
def out_bound_mask(pt, w, h):
return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h)
nearest_index1[out_bound_mask(w_pt0_f_round, W_f, W_f)] = 0
nearest_index0[out_bound_mask(w_pt1_f_round, W_f, W_f)] = 0
loop_back = torch.stack([nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0)
correct_0to1 = loop_back == torch.arange(W_f*W_f, device=device)[None].repeat(M, 1)
correct_0to1[:, 0] = False # ignore the top-left corner
# 4. construct a gt conf_matrix
conf_matrix_f_gt = torch.zeros(M, W_f*W_f, W_f*W_f, device=device)
b_ids, i_ids = torch.where(correct_0to1 != 0)
j_ids = nearest_index1[b_ids, i_ids]
conf_matrix_f_gt[b_ids, i_ids, j_ids] = 1
data.update({"conf_matrix_f_gt": conf_matrix_f_gt})
|