File size: 8,448 Bytes
499e141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from argparse import Namespace
import os
import torch
import cv2
from time import time
from pathlib import Path
import matplotlib.cm as cm
import numpy as np

from src.models.topic_fm import TopicFM
from src import get_model_cfg
from .base import Viz
from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors
from src.utils.plotting import draw_topics, draw_topicfm_demo, error_colormap


class VizTopicFM(Viz):
    def __init__(self, args):
        super().__init__()
        if type(args) == dict:
            args = Namespace(**args)

        self.match_threshold = args.match_threshold
        self.n_sampling_topics = args.n_sampling_topics
        self.show_n_topics = args.show_n_topics

        # Load model
        conf = dict(get_model_cfg())
        conf['match_coarse']['thr'] = self.match_threshold
        conf['coarse']['n_samples'] = self.n_sampling_topics
        print("model config: ", conf)
        self.model = TopicFM(config=conf)
        ckpt_dict = torch.load(args.ckpt)
        self.model.load_state_dict(ckpt_dict['state_dict'])
        self.model = self.model.eval().to(self.device)

        # Name the method
        # self.ckpt_name = args.ckpt.split('/')[-1].split('.')[0]
        self.name = 'TopicFM'

        print(f'Initialize {self.name}')

    def match_and_draw(self, data_dict, root_dir=None, ground_truth=False, measure_time=False, viz_matches=True):
        if measure_time:
            torch.cuda.synchronize()
            start = torch.cuda.Event(enable_timing=True)
            end = torch.cuda.Event(enable_timing=True)
            start.record()
        self.model(data_dict)
        if measure_time:
            torch.cuda.synchronize()
            end.record()
            torch.cuda.synchronize()
            self.time_stats.append(start.elapsed_time(end))

        kpts0 = data_dict['mkpts0_f'].cpu().numpy()
        kpts1 = data_dict['mkpts1_f'].cpu().numpy()

        img_name0, img_name1 = list(zip(*data_dict['pair_names']))[0]
        img0 = cv2.imread(os.path.join(root_dir, img_name0))
        img1 = cv2.imread(os.path.join(root_dir, img_name1))
        if str(data_dict["dataset_name"][0]).lower() == 'scannet':
            img0 = cv2.resize(img0, (640, 480))
            img1 = cv2.resize(img1, (640, 480))

        if viz_matches:
            saved_name = "_".join([img_name0.split('/')[-1].split('.')[0], img_name1.split('/')[-1].split('.')[0]])
            folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name))
            if not os.path.exists(folder_matches):
                os.makedirs(folder_matches)
            path_to_save_matches = os.path.join(folder_matches, "{}.png".format(saved_name))

            if ground_truth:
                compute_symmetrical_epipolar_errors(data_dict)  # compute epi_errs for each match
                compute_pose_errors(data_dict)  # compute R_errs, t_errs, pose_errs for each pair
                epi_errors = data_dict['epi_errs'].cpu().numpy()
                R_errors, t_errors = data_dict['R_errs'][0], data_dict['t_errs'][0]

                self.draw_matches(kpts0, kpts1, img0, img1, epi_errors, path=path_to_save_matches,
                                  R_errs=R_errors, t_errs=t_errors)

                # compute evaluation metrics
                rel_pair_names = list(zip(*data_dict['pair_names']))
                bs = data_dict['image0'].size(0)
                metrics = {
                    # to filter duplicate pairs caused by DistributedSampler
                    'identifiers': ['#'.join(rel_pair_names[b]) for b in range(bs)],
                    'epi_errs': [data_dict['epi_errs'][data_dict['m_bids'] == b].cpu().numpy() for b in range(bs)],
                    'R_errs': data_dict['R_errs'],
                    't_errs': data_dict['t_errs'],
                    'inliers': data_dict['inliers']}
                self.eval_stats.append({'metrics': metrics})
            else:
                m_conf = 1 - data_dict["mconf"].cpu().numpy()
                self.draw_matches(kpts0, kpts1, img0, img1, m_conf, path=path_to_save_matches, conf_thr=0.4)
            if self.show_n_topics > 0:
                folder_topics = os.path.join(root_dir, "{}_viz_topics".format(self.name))
                if not os.path.exists(folder_topics):
                    os.makedirs(folder_topics)
                draw_topics(data_dict, img0, img1, saved_folder=folder_topics, show_n_topics=self.show_n_topics,
                            saved_name=saved_name)

    def run_demo(self, dataloader, writer=None, output_dir=None, no_display=False, skip_frames=1):
        data_dict = next(dataloader)

        frame_id = 0
        last_image_id = 0
        img0 = np.array(cv2.imread(str(data_dict["img_path"][0])), dtype=np.float32) / 255
        frame_tensor = data_dict["img"].to(self.device)
        pair_data = {'image0': frame_tensor}
        last_frame = cv2.resize(img0, (frame_tensor.shape[-1], frame_tensor.shape[-2]), cv2.INTER_LINEAR)

        if output_dir is not None:
            print('==> Will write outputs to {}'.format(output_dir))
            Path(output_dir).mkdir(exist_ok=True)

        # Create a window to display the demo.
        if not no_display:
            window_name = 'Topic-assisted Feature Matching'
            cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
            cv2.resizeWindow(window_name, (640 * 2, 480 * 2))
        else:
            print('Skipping visualization, will not show a GUI.')

        # Print the keyboard help menu.
        print('==> Keyboard control:\n'
              '\tn: select the current frame as the reference image (left)\n'
              '\tq: quit')

        # vis_range = [kwargs["bottom_k"], kwargs["top_k"]]

        while True:
            frame_id += 1
            if frame_id == len(dataloader):
                print('Finished demo_loftr.py')
                break
            data_dict = next(dataloader)
            if frame_id % skip_frames != 0:
                # print("Skipping frame.")
                continue

            stem0, stem1 = last_image_id, data_dict["id"][0].item() - 1
            frame = np.array(cv2.imread(str(data_dict["img_path"][0])), dtype=np.float32) / 255

            frame_tensor = data_dict["img"].to(self.device)
            frame = cv2.resize(frame, (frame_tensor.shape[-1], frame_tensor.shape[-2]), interpolation=cv2.INTER_LINEAR)
            pair_data = {**pair_data, 'image1': frame_tensor}
            self.model(pair_data)

            total_n_matches = len(pair_data['mkpts0_f'])
            mkpts0 = pair_data['mkpts0_f'].cpu().numpy()  # [vis_range[0]:vis_range[1]]
            mkpts1 = pair_data['mkpts1_f'].cpu().numpy()  # [vis_range[0]:vis_range[1]]
            mconf = pair_data['mconf'].cpu().numpy()  # [vis_range[0]:vis_range[1]]

            # Normalize confidence.
            if len(mconf) > 0:
                mconf = 1 - mconf

            # alpha = 0
            # color = cm.jet(mconf, alpha=alpha)
            color = error_colormap(mconf, thr=0.4, alpha=0.1)

            text = [
                f'Topics',
                '#Matches: {}'.format(total_n_matches),
            ]

            out = draw_topicfm_demo(pair_data, last_frame, frame, mkpts0, mkpts1, color, text,
                                    show_n_topics=4, path=None)

            if not no_display:
                if writer is not None:
                    writer.write(out)
                cv2.imshow('TopicFM Matches', out)
                key = chr(cv2.waitKey(10) & 0xFF)
                if key == 'q':
                    if writer is not None:
                        writer.release()
                    print('Exiting...')
                    break
                elif key == 'n':
                    pair_data['image0'] = frame_tensor
                    last_frame = frame
                    last_image_id = (data_dict["id"][0].item() - 1)
                    frame_id_left = frame_id

            elif output_dir is not None:
                stem = 'matches_{:06}_{:06}'.format(stem0, stem1)
                out_file = str(Path(output_dir, stem + '.png'))
                print('\nWriting image to {}'.format(out_file))
                cv2.imwrite(out_file, out)
            else:
                raise ValueError("output_dir is required when no display is given.")

        cv2.destroyAllWindows()
        if writer is not None:
            writer.release()