Spaces:
Running
Running
File size: 8,448 Bytes
499e141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
from argparse import Namespace
import os
import torch
import cv2
from time import time
from pathlib import Path
import matplotlib.cm as cm
import numpy as np
from src.models.topic_fm import TopicFM
from src import get_model_cfg
from .base import Viz
from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors
from src.utils.plotting import draw_topics, draw_topicfm_demo, error_colormap
class VizTopicFM(Viz):
def __init__(self, args):
super().__init__()
if type(args) == dict:
args = Namespace(**args)
self.match_threshold = args.match_threshold
self.n_sampling_topics = args.n_sampling_topics
self.show_n_topics = args.show_n_topics
# Load model
conf = dict(get_model_cfg())
conf['match_coarse']['thr'] = self.match_threshold
conf['coarse']['n_samples'] = self.n_sampling_topics
print("model config: ", conf)
self.model = TopicFM(config=conf)
ckpt_dict = torch.load(args.ckpt)
self.model.load_state_dict(ckpt_dict['state_dict'])
self.model = self.model.eval().to(self.device)
# Name the method
# self.ckpt_name = args.ckpt.split('/')[-1].split('.')[0]
self.name = 'TopicFM'
print(f'Initialize {self.name}')
def match_and_draw(self, data_dict, root_dir=None, ground_truth=False, measure_time=False, viz_matches=True):
if measure_time:
torch.cuda.synchronize()
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
self.model(data_dict)
if measure_time:
torch.cuda.synchronize()
end.record()
torch.cuda.synchronize()
self.time_stats.append(start.elapsed_time(end))
kpts0 = data_dict['mkpts0_f'].cpu().numpy()
kpts1 = data_dict['mkpts1_f'].cpu().numpy()
img_name0, img_name1 = list(zip(*data_dict['pair_names']))[0]
img0 = cv2.imread(os.path.join(root_dir, img_name0))
img1 = cv2.imread(os.path.join(root_dir, img_name1))
if str(data_dict["dataset_name"][0]).lower() == 'scannet':
img0 = cv2.resize(img0, (640, 480))
img1 = cv2.resize(img1, (640, 480))
if viz_matches:
saved_name = "_".join([img_name0.split('/')[-1].split('.')[0], img_name1.split('/')[-1].split('.')[0]])
folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name))
if not os.path.exists(folder_matches):
os.makedirs(folder_matches)
path_to_save_matches = os.path.join(folder_matches, "{}.png".format(saved_name))
if ground_truth:
compute_symmetrical_epipolar_errors(data_dict) # compute epi_errs for each match
compute_pose_errors(data_dict) # compute R_errs, t_errs, pose_errs for each pair
epi_errors = data_dict['epi_errs'].cpu().numpy()
R_errors, t_errors = data_dict['R_errs'][0], data_dict['t_errs'][0]
self.draw_matches(kpts0, kpts1, img0, img1, epi_errors, path=path_to_save_matches,
R_errs=R_errors, t_errs=t_errors)
# compute evaluation metrics
rel_pair_names = list(zip(*data_dict['pair_names']))
bs = data_dict['image0'].size(0)
metrics = {
# to filter duplicate pairs caused by DistributedSampler
'identifiers': ['#'.join(rel_pair_names[b]) for b in range(bs)],
'epi_errs': [data_dict['epi_errs'][data_dict['m_bids'] == b].cpu().numpy() for b in range(bs)],
'R_errs': data_dict['R_errs'],
't_errs': data_dict['t_errs'],
'inliers': data_dict['inliers']}
self.eval_stats.append({'metrics': metrics})
else:
m_conf = 1 - data_dict["mconf"].cpu().numpy()
self.draw_matches(kpts0, kpts1, img0, img1, m_conf, path=path_to_save_matches, conf_thr=0.4)
if self.show_n_topics > 0:
folder_topics = os.path.join(root_dir, "{}_viz_topics".format(self.name))
if not os.path.exists(folder_topics):
os.makedirs(folder_topics)
draw_topics(data_dict, img0, img1, saved_folder=folder_topics, show_n_topics=self.show_n_topics,
saved_name=saved_name)
def run_demo(self, dataloader, writer=None, output_dir=None, no_display=False, skip_frames=1):
data_dict = next(dataloader)
frame_id = 0
last_image_id = 0
img0 = np.array(cv2.imread(str(data_dict["img_path"][0])), dtype=np.float32) / 255
frame_tensor = data_dict["img"].to(self.device)
pair_data = {'image0': frame_tensor}
last_frame = cv2.resize(img0, (frame_tensor.shape[-1], frame_tensor.shape[-2]), cv2.INTER_LINEAR)
if output_dir is not None:
print('==> Will write outputs to {}'.format(output_dir))
Path(output_dir).mkdir(exist_ok=True)
# Create a window to display the demo.
if not no_display:
window_name = 'Topic-assisted Feature Matching'
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.resizeWindow(window_name, (640 * 2, 480 * 2))
else:
print('Skipping visualization, will not show a GUI.')
# Print the keyboard help menu.
print('==> Keyboard control:\n'
'\tn: select the current frame as the reference image (left)\n'
'\tq: quit')
# vis_range = [kwargs["bottom_k"], kwargs["top_k"]]
while True:
frame_id += 1
if frame_id == len(dataloader):
print('Finished demo_loftr.py')
break
data_dict = next(dataloader)
if frame_id % skip_frames != 0:
# print("Skipping frame.")
continue
stem0, stem1 = last_image_id, data_dict["id"][0].item() - 1
frame = np.array(cv2.imread(str(data_dict["img_path"][0])), dtype=np.float32) / 255
frame_tensor = data_dict["img"].to(self.device)
frame = cv2.resize(frame, (frame_tensor.shape[-1], frame_tensor.shape[-2]), interpolation=cv2.INTER_LINEAR)
pair_data = {**pair_data, 'image1': frame_tensor}
self.model(pair_data)
total_n_matches = len(pair_data['mkpts0_f'])
mkpts0 = pair_data['mkpts0_f'].cpu().numpy() # [vis_range[0]:vis_range[1]]
mkpts1 = pair_data['mkpts1_f'].cpu().numpy() # [vis_range[0]:vis_range[1]]
mconf = pair_data['mconf'].cpu().numpy() # [vis_range[0]:vis_range[1]]
# Normalize confidence.
if len(mconf) > 0:
mconf = 1 - mconf
# alpha = 0
# color = cm.jet(mconf, alpha=alpha)
color = error_colormap(mconf, thr=0.4, alpha=0.1)
text = [
f'Topics',
'#Matches: {}'.format(total_n_matches),
]
out = draw_topicfm_demo(pair_data, last_frame, frame, mkpts0, mkpts1, color, text,
show_n_topics=4, path=None)
if not no_display:
if writer is not None:
writer.write(out)
cv2.imshow('TopicFM Matches', out)
key = chr(cv2.waitKey(10) & 0xFF)
if key == 'q':
if writer is not None:
writer.release()
print('Exiting...')
break
elif key == 'n':
pair_data['image0'] = frame_tensor
last_frame = frame
last_image_id = (data_dict["id"][0].item() - 1)
frame_id_left = frame_id
elif output_dir is not None:
stem = 'matches_{:06}_{:06}'.format(stem0, stem1)
out_file = str(Path(output_dir, stem + '.png'))
print('\nWriting image to {}'.format(out_file))
cv2.imwrite(out_file, out)
else:
raise ValueError("output_dir is required when no display is given.")
cv2.destroyAllWindows()
if writer is not None:
writer.release()
|