File size: 15,373 Bytes
e6ac593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import pyrootutils

root = pyrootutils.setup_root(
    search_from=__file__,
    indicator=[".git", "pyproject.toml"],
    pythonpath=True,
    dotenv=True,
)

SEED = 32000

import collections
import os

import hydra
from hydra.utils import instantiate
from lightning.fabric import Fabric

print(SEED)
import random

os.environ["PYTHONHASHSEED"] = str(SEED)

import numpy as np
import torch
import tqdm
import wandb
from torch.optim.adamw import AdamW
from torch.utils.data import DataLoader

from ripe import utils
from ripe.benchmarks.imw_2020 import IMW_2020_Benchmark
from ripe.utils.utils import get_rewards
from ripe.utils.wandb_utils import get_flattened_wandb_cfg

log = utils.get_pylogger(__name__)
from pathlib import Path

torch.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)


def unpack_batch(batch):
    src_image = batch["src_image"]
    trg_image = batch["trg_image"]
    trg_mask = batch["trg_mask"]
    src_mask = batch["src_mask"]
    label = batch["label"]
    H = batch["homography"]

    return src_image, trg_image, src_mask, trg_mask, H, label


@hydra.main(config_path="../conf/", config_name="config", version_base=None)
def train(cfg):
    """Main training function for the RIPE model."""
    #  Prepare model, data and hyperparms

    strategy = "ddp" if cfg.num_gpus > 1 else "auto"
    fabric = Fabric(
        accelerator="cuda",
        devices=cfg.num_gpus,
        precision=cfg.precision,
        strategy=strategy,
    )
    fabric.launch()

    output_dir = Path(cfg.output_dir)
    experiment_name = output_dir.parent.parent.parent.name
    run_id = output_dir.parent.parent.name
    timestamp = output_dir.parent.name + "_" + output_dir.name

    experiment_name = run_id + " " + timestamp + " " + experiment_name

    # setup logger
    wandb_logger = wandb.init(
        project=cfg.project_name,
        name=experiment_name,
        config=get_flattened_wandb_cfg(cfg),
        dir=cfg.output_dir,
        mode=cfg.wandb_mode,
    )

    min_nums_matches = {"homography": 4, "fundamental": 8, "fundamental_7pt": 7}
    min_num_matches = min_nums_matches[cfg.transformation_model]
    print(f"Minimum number of matches for {cfg.transformation_model} is {min_num_matches}")

    batch_size = cfg.batch_size
    steps = cfg.num_steps
    lr = cfg.lr

    num_grad_accs = (
        cfg.num_grad_accs
    )  # this performs grad accumulation to simulate larger batch size, set to 1 to disable;

    # instantiate dataset
    ds = instantiate(cfg.data)

    # prepare dataloader
    dl = DataLoader(
        ds,
        batch_size=batch_size,
        shuffle=True,
        drop_last=True,
        persistent_workers=False,
        num_workers=cfg.num_workers,
    )
    dl = fabric.setup_dataloaders(dl)
    i_dl = iter(dl)

    # create matcher
    matcher = instantiate(cfg.matcher)

    if cfg.desc_loss_weight != 0.0:
        descriptor_loss = instantiate(cfg.descriptor_loss)
    else:
        log.warning(
            "Descriptor loss weight is 0.0, descriptor loss will not be used. 1x1 conv for descriptors will be deactivated!"
        )
        descriptor_loss = None

    upsampler = instantiate(cfg.upsampler) if "upsampler" in cfg else None

    # create network
    net = instantiate(cfg.network)(
        net=instantiate(cfg.backbones),
        upsampler=upsampler,
        descriptor_dim=cfg.descriptor_dim if descriptor_loss is not None else None,
        device=fabric.device,
    ).train()

    # get num parameters
    num_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
    log.info(f"Number of parameters: {num_params}")

    fp_penalty = cfg.fp_penalty  # small penalty for not finding a match
    kp_penalty = cfg.kp_penalty  # small penalty for low logprob keypoints

    opt_pi = AdamW(filter(lambda x: x.requires_grad, net.parameters()), lr=lr, weight_decay=1e-5)
    net, opt_pi = fabric.setup(net, opt_pi)

    if cfg.lr_scheduler:
        scheduler = instantiate(cfg.lr_scheduler)(optimizer=opt_pi, steps_init=0)
    else:
        scheduler = None

    val_benchmark = IMW_2020_Benchmark(
        use_predefined_subset=True,
        conf_inference=cfg.conf_inference,
        edge_input_divisible_by=None,
    )

    # mean average of skipped batches
    # this is used to monitor how many batches were skipped due to not enough keypoints
    # this is useful to detect if the model is not learning anything -> should be zero
    ma_skipped_batches = collections.deque(maxlen=100)

    opt_pi.zero_grad()

    # initialize scheduler
    alpha_scheduler = instantiate(cfg.alpha_scheduler)
    beta_scheduler = instantiate(cfg.beta_scheduler)
    inl_th_scheduler = instantiate(cfg.inl_th)

    # ======  Training Loop  ======
    # check if the model is in training mode
    net.train()

    with tqdm.tqdm(total=steps) as pbar:
        for i_step in range(steps):
            alpha = alpha_scheduler(i_step)
            beta = beta_scheduler(i_step)
            inl_th = inl_th_scheduler(i_step)

            if scheduler:
                scheduler.step()

            # Initialize vars for current step
            # We need to handle batching because the description can have arbitrary number of keypoints
            sum_reward_batch = 0
            sum_num_keypoints_1 = 0
            sum_num_keypoints_2 = 0
            loss = None
            loss_policy_stack = None
            loss_desc_stack = None
            loss_kp_stack = None

            try:
                batch = next(i_dl)
            except StopIteration:
                i_dl = iter(dl)
                batch = next(i_dl)

            p1, p2, mask_padding_1, mask_padding_2, Hs, label = unpack_batch(batch)

            (
                kpts1,
                logprobs1,
                selected_mask1,
                mask_padding_grid_1,
                logits_selected_1,
                out1,
            ) = net(p1, mask_padding_1, training=True)
            (
                kpts2,
                logprobs2,
                selected_mask2,
                mask_padding_grid_2,
                logits_selected_2,
                out2,
            ) = net(p2, mask_padding_2, training=True)

            # upsample coarse descriptors for all keypoints from the intermediate feature maps from the encoder
            desc_1 = net.get_descs(out1["coarse_descs"], p1, kpts1, p1.shape[2], p1.shape[3])
            desc_2 = net.get_descs(out2["coarse_descs"], p2, kpts2, p2.shape[2], p2.shape[3])

            if cfg.padding_filter_mode == "ignore":  # remove keypoints that are in padding
                batch_mask_selection_for_matching_1 = selected_mask1 & mask_padding_grid_1
                batch_mask_selection_for_matching_2 = selected_mask2 & mask_padding_grid_2
            elif cfg.padding_filter_mode == "punish":
                batch_mask_selection_for_matching_1 = selected_mask1  # keep all keypoints
                batch_mask_selection_for_matching_2 = selected_mask2  # punish the keypoints in the padding area
            else:
                raise ValueError(f"Unknown padding filter mode: {cfg.padding_filter_mode}")

            (
                batch_rel_idx_matches,
                batch_abs_idx_matches,
                batch_ransac_inliers,
                batch_Fm,
            ) = matcher(
                kpts1,
                kpts2,
                desc_1,
                desc_2,
                batch_mask_selection_for_matching_1,
                batch_mask_selection_for_matching_2,
                inl_th,
                label if cfg.no_filtering_negatives else None,
            )

            for b in range(batch_size):
                # ignore if less than 16 keypoints have been detected
                if batch_rel_idx_matches[b] is None:
                    ma_skipped_batches.append(1)
                    continue
                else:
                    ma_skipped_batches.append(0)

                mask_selection_for_matching_1 = batch_mask_selection_for_matching_1[b]
                mask_selection_for_matching_2 = batch_mask_selection_for_matching_2[b]

                rel_idx_matches = batch_rel_idx_matches[b]
                abs_idx_matches = batch_abs_idx_matches[b]
                ransac_inliers = batch_ransac_inliers[b]

                if cfg.selected_only:
                    # every SELECTED keypoint with every other SELECTED keypoint
                    dense_logprobs = logprobs1[b][mask_selection_for_matching_1].view(-1, 1) + logprobs2[b][
                        mask_selection_for_matching_2
                    ].view(1, -1)
                else:
                    if cfg.padding_filter_mode == "ignore":
                        # every keypoint with every other keypoint, but WITHOUT keypoint in the padding area
                        dense_logprobs = logprobs1[b][mask_padding_grid_1[b]].view(-1, 1) + logprobs2[b][
                            mask_padding_grid_2[b]
                        ].view(1, -1)
                    elif cfg.padding_filter_mode == "punish":
                        # every keypoint with every other keypoint, also WITH keypoints in the padding areas -> will be punished by the reward
                        dense_logprobs = logprobs1[b].view(-1, 1) + logprobs2[b].view(1, -1)
                    else:
                        raise ValueError(f"Unknown padding filter mode: {cfg.padding_filter_mode}")

                reward = None

                if cfg.reward_type == "inlier":
                    reward = (
                        0.5 if cfg.no_filtering_negatives and not label[b] else 1.0
                    )  # reward is 1.0 if the pair is positive, 0.5 if negative and no filtering is applied
                elif cfg.reward_type == "inlier_ratio":
                    ratio_inlier = ransac_inliers.sum() / len(abs_idx_matches)
                    reward = ratio_inlier  # reward is the ratio of inliers -> higher if more matches are inliers
                elif cfg.reward_type == "inlier+inlier_ratio":
                    ratio_inlier = ransac_inliers.sum() / len(abs_idx_matches)
                    reward = (
                        (1.0 - beta) * 1.0 + beta * ratio_inlier
                    )  # reward is a combination of the ratio of inliers and the number of inliers -> gradually changes
                else:
                    raise ValueError(f"Unknown reward type: {cfg.reward_type}")

                dense_rewards = get_rewards(
                    reward,
                    kpts1[b],
                    kpts2[b],
                    mask_selection_for_matching_1,
                    mask_selection_for_matching_2,
                    mask_padding_grid_1[b],
                    mask_padding_grid_2[b],
                    rel_idx_matches,
                    abs_idx_matches,
                    ransac_inliers,
                    label[b],
                    fp_penalty * alpha,
                    use_whitening=cfg.use_whitening,
                    selected_only=cfg.selected_only,
                    filter_mode=cfg.padding_filter_mode,
                )

                if descriptor_loss is not None:
                    hard_loss = descriptor_loss(
                        desc1=desc_1[b],
                        desc2=desc_2[b],
                        matches=abs_idx_matches,
                        inliers=ransac_inliers,
                        label=label[b],
                        logits_1=None,
                        logits_2=None,
                    )
                    loss_desc_stack = (
                        hard_loss if loss_desc_stack is None else torch.hstack((loss_desc_stack, hard_loss))
                    )

                sum_reward_batch += dense_rewards.sum()

                current_loss_policy = (dense_rewards * dense_logprobs).view(-1)

                loss_policy_stack = (
                    current_loss_policy
                    if loss_policy_stack is None
                    else torch.hstack((loss_policy_stack, current_loss_policy))
                )

                if kp_penalty != 0.0:
                    # keypoints with low logprob are penalized
                    # as they get large negative logprob values multiplying them with the penalty will make the loss larger
                    loss_kp = (
                        logprobs1[b][mask_selection_for_matching_1]
                        * torch.full_like(
                            logprobs1[b][mask_selection_for_matching_1],
                            kp_penalty * alpha,
                        )
                    ).mean() + (
                        logprobs2[b][mask_selection_for_matching_2]
                        * torch.full_like(
                            logprobs2[b][mask_selection_for_matching_2],
                            kp_penalty * alpha,
                        )
                    ).mean()
                    loss_kp_stack = loss_kp if loss_kp_stack is None else torch.hstack((loss_kp_stack, loss_kp))

                sum_num_keypoints_1 += mask_selection_for_matching_1.sum()
                sum_num_keypoints_2 += mask_selection_for_matching_2.sum()

            loss = loss_policy_stack.mean()
            if loss_kp_stack is not None:
                loss += loss_kp_stack.mean()

            loss = -loss

            if descriptor_loss is not None:
                loss += cfg.desc_loss_weight * loss_desc_stack.mean()

            pbar.set_description(
                f"LP: {loss.item():.4f} - Det: ({sum_num_keypoints_1 / batch_size:.4f}, {sum_num_keypoints_2 / batch_size:.4f}), #mRwd: {sum_reward_batch / batch_size:.1f}"
            )
            pbar.update()

            # backward pass
            loss /= num_grad_accs
            fabric.backward(loss)

            if i_step % num_grad_accs == 0:
                opt_pi.step()
                opt_pi.zero_grad()

            if i_step % cfg.log_interval == 0:
                wandb_logger.log(
                    {
                        # "loss": loss.item() if not use_amp else scaled_loss.item(),
                        "loss": loss.item(),
                        "loss_policy": -loss_policy_stack.mean().item(),
                        "loss_kp": loss_kp_stack.mean().item() if loss_kp_stack is not None else 0.0,
                        "loss_hard": (loss_desc_stack.mean().item() if loss_desc_stack is not None else 0.0),
                        "mean_num_det_kpts1": sum_num_keypoints_1 / batch_size,
                        "mean_num_det_kpts2": sum_num_keypoints_2 / batch_size,
                        "mean_reward": sum_reward_batch / batch_size,
                        "lr": opt_pi.param_groups[0]["lr"],
                        "ma_skipped_batches": sum(ma_skipped_batches) / len(ma_skipped_batches),
                        "inl_th": inl_th,
                    },
                    step=i_step,
                )

            if i_step % cfg.val_interval == 0:
                val_benchmark.evaluate(net, fabric.device, progress_bar=False)
                val_benchmark.log_results(logger=wandb_logger, step=i_step)

                # ensure that the model is in training mode again
                net.train()

    # save the model
    torch.save(
        net.state_dict(),
        output_dir / ("model" + "_" + str(i_step + 1) + "_final" + ".pth"),
    )


if __name__ == "__main__":
    train()