Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,429 Bytes
e6ac593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import os
from pathlib import Path
import cv2
import kornia.feature as KF
import matplotlib.pyplot as plt
import numpy as np
import poselib
import torch
from tqdm import tqdm
from ripe import utils
from ripe.data.data_transforms import Compose, Normalize, Resize
from ripe.data.datasets.disk_imw import DISK_IMW
from ripe.utils.pose_error import AUCMetric, relative_pose_error
from ripe.utils.utils import (
cv2_matches_from_kornia,
cv_resize_and_pad_to_shape,
to_cv_kpts,
)
log = utils.get_pylogger(__name__)
class IMW_2020_Benchmark:
def __init__(
self,
use_predefined_subset: bool = True,
conf_inference=None,
edge_input_divisible_by=None,
):
data_dir = os.getenv("DATA_DIR")
if data_dir is None:
raise ValueError("Environment variable DATA_DIR is not set.")
root_path = Path(data_dir) / "disk-data"
self.data = DISK_IMW(
str(
root_path
), # Resize only to ensure that the input size is divisible the value of edge_input_divisible_by
transforms=Compose(
[
Resize(None, edge_input_divisible_by),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
),
)
self.ids_subset = None
self.results = []
self.conf_inference = conf_inference
# fmt: off
if use_predefined_subset:
self.ids_subset = [4921, 3561, 3143, 6040, 802, 6828, 5338, 9275, 10764, 10085, 5124, 11355, 7, 10027, 2161, 4433, 6887, 3311, 10766,
11451, 11433, 8539, 2581, 10300, 10562, 1723, 8803, 6275, 10140, 11487, 6238, 638, 8092, 9979, 201, 10394, 3414,
9002, 7456, 2431, 632, 6589, 9265, 9889, 3139, 7890, 10619, 4899, 675, 176, 4309, 4814, 3833, 3519, 148, 4560, 10705,
3744, 1441, 4049, 1791, 5106, 575, 1540, 1105, 6791, 1383, 9344, 501, 2504, 4335, 8992, 10970, 10786, 10405, 9317,
5279, 1396, 5044, 9408, 11125, 10417, 7627, 7480, 1358, 7738, 5461, 10178, 9226, 8106, 2766, 6216, 4032, 7298, 259,
3021, 2645, 8756, 7513, 3163, 2510, 6701, 6684, 3159, 9689, 7425, 6066, 1904, 6382, 3052, 777, 6277, 7409, 5997, 2987,
11316, 2894, 4528, 1927, 10366, 8605, 2726, 1886, 2416, 2164, 3352, 2997, 6636, 6765, 5609, 3679, 76, 10956, 3612, 6699,
1741, 8811, 3755, 1285, 9520, 2476, 3977, 370, 9823, 1834, 7551, 6227, 7303, 6399, 4758, 10713, 5050, 380, 11056, 7620,
4826, 6090, 9011, 7523, 7355, 8021, 9801, 1801, 6522, 7138, 10017, 8732, 6402, 3116, 4031, 6088, 3975, 9841, 9082, 9412,
5406, 217, 2385, 8791, 8361, 494, 4319, 5275, 3274, 335, 6731, 207, 10095, 3068, 5996, 3951, 2808, 5877, 6134, 7772, 10042,
8574, 5501, 10885, 7871]
# self.ids_subset = self.ids_subset[:10]
# fmt: on
def evaluate_sample(self, model, sample, dev):
img_1 = sample["src_image"].unsqueeze(0).to(dev)
img_2 = sample["trg_image"].unsqueeze(0).to(dev)
scale_h_1, scale_w_1 = (
sample["orig_size_src"][0] / img_1.shape[2],
sample["orig_size_src"][1] / img_1.shape[3],
)
scale_h_2, scale_w_2 = (
sample["orig_size_trg"][0] / img_2.shape[2],
sample["orig_size_trg"][1] / img_2.shape[3],
)
M = None
info = {}
kpts_1, desc_1, score_1 = None, None, None
kpts_2, desc_2, score_2 = None, None, None
match_dists, match_idxs = None, None
try:
kpts_1, desc_1, score_1 = model.detectAndCompute(img_1, **self.conf_inference)
kpts_2, desc_2, score_2 = model.detectAndCompute(img_2, **self.conf_inference)
if kpts_1.dim() == 3:
assert kpts_1.shape[0] == 1 and kpts_2.shape[0] == 1, "Batch size must be 1"
kpts_1, desc_1, score_1 = (
kpts_1.squeeze(0),
desc_1[0].squeeze(0),
score_1[0].squeeze(0),
)
kpts_2, desc_2, score_2 = (
kpts_2.squeeze(0),
desc_2[0].squeeze(0),
score_2[0].squeeze(0),
)
scale_1 = torch.tensor([scale_w_1, scale_h_1], dtype=torch.float).to(dev)
scale_2 = torch.tensor([scale_w_2, scale_h_2], dtype=torch.float).to(dev)
kpts_1 = kpts_1 * scale_1
kpts_2 = kpts_2 * scale_2
matcher = KF.DescriptorMatcher("mnn") # threshold is not used with mnn
match_dists, match_idxs = matcher(desc_1, desc_2)
matched_pts_1 = kpts_1[match_idxs[:, 0]]
matched_pts_2 = kpts_2[match_idxs[:, 1]]
camera_1 = sample["src_camera"]
camera_2 = sample["trg_camera"]
M, info = poselib.estimate_relative_pose(
matched_pts_1.cpu().numpy(),
matched_pts_2.cpu().numpy(),
camera_1.to_cameradict(),
camera_2.to_cameradict(),
{
"max_epipolar_error": 0.5,
},
{},
)
except RuntimeError as e:
if "No keypoints detected" in str(e):
pass
else:
raise e
success = M is not None
if success:
M = {
"R": torch.tensor(M.R, dtype=torch.float),
"t": torch.tensor(M.t, dtype=torch.float),
}
inl = info["inliers"]
else:
M = {
"R": torch.eye(3, dtype=torch.float),
"t": torch.zeros((3), dtype=torch.float),
}
inl = np.zeros((0,)).astype(bool)
t_err, r_err = relative_pose_error(sample["s2t_R"].cpu(), sample["s2t_T"].cpu(), M["R"], M["t"])
rel_pose_error = max(t_err.item(), r_err.item()) if success else np.inf
ransac_inl = np.sum(inl)
ransac_inl_ratio = np.mean(inl)
if success:
assert match_dists is not None and match_idxs is not None, "Matches must be computed"
cv_keypoints_src = to_cv_kpts(kpts_1, score_1)
cv_keypoints_trg = to_cv_kpts(kpts_2, score_2)
cv_matches = cv2_matches_from_kornia(match_dists, match_idxs)
cv_mask = [int(m) for m in inl]
else:
cv_keypoints_src, cv_keypoints_trg = [], []
cv_matches, cv_mask = [], []
estimation = {
"success": success,
"M_0to1": M,
"inliers": torch.tensor(inl).to(img_1),
"rel_pose_error": rel_pose_error,
"ransac_inl": ransac_inl,
"ransac_inl_ratio": ransac_inl_ratio,
"path_src_image": sample["src_path"],
"path_trg_image": sample["trg_path"],
"cv_keypoints_src": cv_keypoints_src,
"cv_keypoints_trg": cv_keypoints_trg,
"cv_matches": cv_matches,
"cv_mask": cv_mask,
}
return estimation
def evaluate(self, model, dev, progress_bar=False):
model.eval()
# reset results
self.results = []
for idx in tqdm(
self.ids_subset if self.ids_subset is not None else range(len(self.data)),
disable=not progress_bar,
):
sample = self.data[idx]
self.results.append(self.evaluate_sample(model, sample, dev))
def get_auc(self, threshold=5, downsampled=False):
if len(self.results) == 0:
raise ValueError("No results to log. Run evaluate first.")
summary_results = self.calc_auc(downsampled=downsampled)
return summary_results[f"rel_pose_error@{threshold}°{'__original' if not downsampled else '__downsampled'}"]
def plot_results(self, num_samples=10, logger=None, step=None, downsampled=False):
if len(self.results) == 0:
raise ValueError("No results to plot. Run evaluate first.")
plot_data = []
for result in self.results[:num_samples]:
img1 = cv2.imread(result["path_src_image"])
img2 = cv2.imread(result["path_trg_image"])
# from BGR to RGB
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
plt_matches = cv2.drawMatches(
img1,
result["cv_keypoints_src"],
img2,
result["cv_keypoints_trg"],
result["cv_matches"],
None,
matchColor=None,
matchesMask=result["cv_mask"],
flags=cv2.DrawMatchesFlags_DEFAULT,
)
file_name = (
Path(result["path_src_image"]).parent.parent.name
+ "_"
+ Path(result["path_src_image"]).stem
+ Path(result["path_trg_image"]).stem
+ ("_downsampled" if downsampled else "")
+ ".png"
)
# print rel_pose_error on image
plt_matches = cv2.putText(
plt_matches,
f"rel_pose_error: {result['rel_pose_error']:.2f} num_inliers: {result['ransac_inl']} inl_ratio: {result['ransac_inl_ratio']:.2f} num_matches: {len(result['cv_matches'])} num_keypoints: {len(result['cv_keypoints_src'])}/{len(result['cv_keypoints_trg'])}",
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 0, 0),
2,
cv2.LINE_8,
)
plot_data.append({"file_name": file_name, "image": plt_matches})
if logger is None:
log.info("No logger provided. Using plt to plot results.")
for image in plot_data:
plt.imsave(
image["file_name"],
cv_resize_and_pad_to_shape(image["image"], (1024, 2048)),
)
plt.close()
else:
import wandb
log.info(f"Logging images to wandb with step={step}")
if not downsampled:
logger.log(
{
"examples": [
wandb.Image(cv_resize_and_pad_to_shape(image["image"], (1024, 2048))) for image in plot_data
]
},
step=step,
)
else:
logger.log(
{
"examples_downsampled": [
wandb.Image(cv_resize_and_pad_to_shape(image["image"], (1024, 2048))) for image in plot_data
]
},
step=step,
)
def log_results(self, logger=None, step=None, downsampled=False):
if len(self.results) == 0:
raise ValueError("No results to log. Run evaluate first.")
summary_results = self.calc_auc(downsampled=downsampled)
if logger is not None:
logger.log(summary_results, step=step)
else:
log.warning("No logger provided. Printing results instead.")
print(self.calc_auc())
def print_results(self):
if len(self.results) == 0:
raise ValueError("No results to print. Run evaluate first.")
print(self.calc_auc())
def calc_auc(self, auc_thresholds=None, downsampled=False):
if auc_thresholds is None:
auc_thresholds = [5, 10, 20]
if not isinstance(auc_thresholds, list):
auc_thresholds = [auc_thresholds]
if len(self.results) == 0:
raise ValueError("No results to calculate auc. Run evaluate first.")
rel_pose_errors = [r["rel_pose_error"] for r in self.results]
pose_aucs = AUCMetric(auc_thresholds, rel_pose_errors).compute()
assert isinstance(pose_aucs, list) and len(pose_aucs) == len(auc_thresholds)
ext = "_downsampled" if downsampled else "_original"
summary = {}
for i, ath in enumerate(auc_thresholds):
summary[f"rel_pose_error@{ath}°_{ext}"] = pose_aucs[i]
return summary
|