Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,688 Bytes
e6ac593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
#
<p align="center">
<h1 align="center"> <ins>RIPE</ins>:<br> Reinforcement Learning on Unlabeled Image Pairs for Robust Keypoint Extraction <br><br>ππΊ ICCV 2025 πΊπ</h1>
<p align="center">
<a href="https://scholar.google.com/citations?user=ybMR38kAAAAJ">Johannes KΓΌnzel</a>
Β·
<a href="https://scholar.google.com/citations?user=5yTuyGIAAAAJ">Anna Hilsmann</a>
Β·
<a href="https://scholar.google.com/citations?user=BCElyCkAAAAJ">Peter Eisert</a>
</p>
<h2 align="center"><p>
<a href="https://arxiv.org/abs/2507.04839" align="center">Arxiv</a> |
<a href="https://fraunhoferhhi.github.io/RIPE/" align="center">Project Page</a> |
<a href="https://huggingface.co/spaces/JohannesK14/RIPE" align="center">π€Demoπ€</a>
</p></h2>
<div align="center"></div>
</p>
<br/>
<p align="center">
<img src="assets/teaser_image.png" alt="example" width=80%>
<br>
<em>RIPE demonstrates that keypoint detection and description can be learned from image pairs only - no depth, no pose, no artificial augmentation required.</em>
</p>
## Setup
π‘**Alternative**π‘ Install nothing locally and try our Hugging Face demo: [π€Demoπ€](https://huggingface.co/spaces/JohannesK14/RIPE)
1. Install mamba by following the instructions given here: [Mamba Installation](https://mamba.readthedocs.io/en/latest/installation/mamba-installation.html)
2. Create a new environment with:
```bash
mamba create -f conda_env.yml
mamba activate ripe-env
```
## How to use
Or just check [demo.py](demo.py)
```python
import cv2
import kornia.feature as KF
import kornia.geometry as KG
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchvision.io import decode_image
from ripe import vgg_hyper
from ripe.utils.utils import cv2_matches_from_kornia, resize_image, to_cv_kpts
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = vgg_hyper().to(dev)
model.eval()
image1 = resize_image(decode_image("assets/all_souls_000013.jpg").float().to(dev) / 255.0)
image2 = resize_image(decode_image("assets/all_souls_000055.jpg").float().to(dev) / 255.0)
kpts_1, desc_1, score_1 = model.detectAndCompute(image1, threshold=0.5, top_k=2048)
kpts_2, desc_2, score_2 = model.detectAndCompute(image2, threshold=0.5, top_k=2048)
matcher = KF.DescriptorMatcher("mnn") # threshold is not used with mnn
match_dists, match_idxs = matcher(desc_1, desc_2)
matched_pts_1 = kpts_1[match_idxs[:, 0]]
matched_pts_2 = kpts_2[match_idxs[:, 1]]
H, mask = KG.ransac.RANSAC(model_type="fundamental", inl_th=1.0)(matched_pts_1, matched_pts_2)
matchesMask = mask.int().ravel().tolist()
result_ransac = cv2.drawMatches(
(image1.cpu().permute(1, 2, 0).numpy() * 255.0).astype(np.uint8),
to_cv_kpts(kpts_1, score_1),
(image2.cpu().permute(1, 2, 0).numpy() * 255.0).astype(np.uint8),
to_cv_kpts(kpts_2, score_2),
cv2_matches_from_kornia(match_dists, match_idxs),
None,
matchColor=(0, 255, 0),
matchesMask=matchesMask,
# matchesMask=None, # without RANSAC filtering
singlePointColor=(0, 0, 255),
flags=cv2.DrawMatchesFlags_DEFAULT,
)
plt.imshow(result_ransac)
plt.axis("off")
plt.tight_layout()
plt.show()
# plt.savefig("result_ransac.png")
```
## Reproduce the results
### MegaDepth 1500 & HPatches
1. Download and install [Glue Factory](https://github.com/cvg/glue-factory)
2. Add this repo as a submodule to Glue Factory:
```bash
cd glue-factory
git submodule add https://github.com/fraunhoferhhi/RIPE.git thirdparty/ripe
```
3. Create the new file ripe.py under gluefactory/models/extractors/ with the following content:
<details>
<summary>ripe.py</summary>
```python
import sys
from pathlib import Path
import torch
import torchvision.transforms as transforms
from ..base_model import BaseModel
ripe_path = Path(__file__).parent / "../../../thirdparty/ripe"
print(f"RIPE Path: {ripe_path.resolve()}")
# check if the path exists
if not ripe_path.exists():
raise RuntimeError(f"RIPE path not found: {ripe_path}")
sys.path.append(str(ripe_path))
from ripe import vgg_hyper
class RIPE(BaseModel):
default_conf = {
"name": "RIPE",
"model_path": None,
"chunk": 4,
"dense_outputs": False,
"threshold": 1.0,
"top_k": 2048,
}
required_data_keys = ["image"]
# Initialize the line matcher
def _init(self, conf):
self.normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
self.model = vgg_hyper(model_path=conf.model_path)
self.model.eval()
self.set_initialized()
def _forward(self, data):
image = data["image"]
keypoints, scores, descriptors = [], [], []
chunk = self.conf.chunk
for i in range(0, image.shape[0], chunk):
if self.conf.dense_outputs:
raise NotImplementedError("Dense outputs are not supported")
else:
im = image[: min(image.shape[0], i + chunk)]
im = self.normalizer(im)
H, W = im.shape[-2:]
kpt, desc, score = self.model.detectAndCompute(
im,
threshold=self.conf.threshold,
top_k=self.conf.top_k,
)
keypoints += [kpt.squeeze(0)]
scores += [score.squeeze(0)]
descriptors += [desc.squeeze(0)]
del kpt
del desc
del score
keypoints = torch.stack(keypoints, 0)
scores = torch.stack(scores, 0)
descriptors = torch.stack(descriptors, 0)
pred = {
# "keypoints": keypoints.to(image) + 0.5,
"keypoints": keypoints.to(image),
"keypoint_scores": scores.to(image),
"descriptors": descriptors.to(image),
}
return pred
def loss(self, pred, data):
raise NotImplementedError
```
</details>
4. Create ripe+NN.yaml in gluefactory/configs with the following content:
<details>
<summary>ripe+NN.yaml</summary>
```yaml
model:
name: two_view_pipeline
extractor:
name: extractors.ripe
threshold: 1.0
top_k: 2048
matcher:
name: matchers.nearest_neighbor_matcher
benchmarks:
megadepth1500:
data:
preprocessing:
side: long
resize: 1600
eval:
estimator: poselib
ransac_th: 0.5
hpatches:
eval:
estimator: poselib
ransac_th: 0.5
model:
extractor:
top_k: 1024 # overwrite config above
```
5. Run the MegaDepth 1500 evaluation script:
```bash
python -m gluefactory.eval.megadepth1500 --conf ripe+NN # for MegaDepth 1500
```
Should result in:
```bash
'rel_pose_error@10Β°': 0.6834,
'rel_pose_error@20Β°': 0.7803,
'rel_pose_error@5Β°': 0.5511,
```
6. Run the HPatches evaluation script:
```bash
python -m gluefactory.eval.hpatches --conf ripe+NN # for HPatches
```
Should result in:
```bash
'H_error_ransac@1px': 0.3793,
'H_error_ransac@3px': 0.5893,
'H_error_ransac@5px': 0.692,
```
## Training
1. Create a .env file with the following content:
```bash
OUTPUT_DIR="/output"
DATA_DIR="/data"
```
2. Download the required datasets:
<details>
<summary>DISK Megadepth subset</summary>
To download the dataset used by [DISK](https://github.com/cvlab-epfl/disk) execute the following commands:
```bash
cd data
bash download_disk_data.sh
```
</details>
<details>
<summary>Tokyo 24/7</summary>
- β οΈ**Optional**β οΈ: Only if you are interest in the model used in Section 4.6 of the paper!
- Download the Tokyo 24/7 query images from here: [Tokyo 24/7 Query Images V3](http://www.ok.ctrl.titech.ac.jp/~torii/project/247/download/247query_v3.zip) from the official [website](http://www.ok.ctrl.titech.ac.jp/~torii/project/247/_).
- extract them into data/Tolyo_Query_V3
```bash
Tokyo_Query_V3/
βββ 00001.csv
βββ 00001.jpg
βββ 00002.csv
βββ 00002.jpg
βββ ...
βββ 01125.csv
βββ 01125.jpg
βββ Readme.txt
βββ Readme.txt~
```
</details>
<details>
<summary>ACDC</summary>
- β οΈ**Optional**β οΈ: Only if you are interest in the model used in Section 6.1 (supplementary) of the paper!
- Download the RGB images from here: [ACDC RGB Images](https://acdc.vision.ee.ethz.ch/rgb_anon_trainvaltest.zip)
- extract them into data/ACDC
```bash
ACDC/
rgb_anon
βββ fog
βΒ Β βββ test
βΒ Β βΒ Β βββ GOPR0475
βΒ Β βΒ Β βββ GOPR0477
βΒ Β βββ test_ref
βΒ Β βΒ Β βββ GOPR0475
βΒ Β βΒ Β βββ GOPR0477
βΒ Β βββ train
βΒ Β βΒ Β βββ GOPR0475
βΒ Β βΒ Β βββ GOPR0476
βββ night
```
</details>
3. Run the training script:
```bash
python ripe/train.py --config-name train project_name=train name=reproduce wandb_mode=offline
```
You can also easily switch setting from the command line, e.g. to addionally train on the Tokyo 24/7 dataset:
```bash
python ripe/train.py --config-name train project_name=train name=reproduce wandb_mode=offline data=megadepth+tokyo
```
## Acknowledgements
Our code is partly based on the following repositories:
- [DALF](https://github.com/verlab/DALF_CVPR_2023) Apache License 2.0
- [DeDoDe](https://github.com/Parskatt/DeDoDe) MIT License
- [DISK](https://github.com/cvlab-epfl/disk) Apache License 2.0
Our evaluation was based on the following repositories:
- [Glue Factory](https://github.com/cvg/glue-factory)
- [hloc](https://github.com/cvg/Hierarchical-Localization)
We would like to thank the authors of these repositories for their great work and for making their code available.
Our project webpage is based on the [Acadamic Project Page Template](https://github.com/eliahuhorwitz/Academic-project-page-template) by Eliahu Horwitz.
## BibTex Citation
```
@article{ripe2025,
year = {2025},
title = {{RIPE: Reinforcement Learning on Unlabeled Image Pairs for Robust Keypoint Extraction}},
author = {KΓΌnzel, Johannes and Hilsmann, Anna and Eisert, Peter},
journal = {arXiv},
eprint = {2507.04839},
}
```
|