File size: 10,587 Bytes
13760e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import time


def dual_softmax_loss(X, Y, temp = 0.2):
    if X.size() != Y.size() or X.dim() != 2 or Y.dim() != 2:
        raise RuntimeError('Error: X and Y shapes must match and be 2D matrices')

    dist_mat = (X @ Y.t()) * temp
    conf_matrix12 = F.log_softmax(dist_mat, dim=1)
    conf_matrix21 = F.log_softmax(dist_mat.t(), dim=1)

    with torch.no_grad():
        conf12 = torch.exp( conf_matrix12 ).max(dim=-1)[0]
        conf21 = torch.exp( conf_matrix21 ).max(dim=-1)[0]
        conf = conf12 * conf21

    target = torch.arange(len(X), device = X.device)

    loss = F.nll_loss(conf_matrix12, target) + \
           F.nll_loss(conf_matrix21, target)

    return loss, conf


class LiftFeatLoss(nn.Module):
    def __init__(self,device,lam_descs=1,lam_fb_descs=1,lam_kpts=1,lam_heatmap=1,lam_normals=1,lam_coordinates=1,lam_fb_coordinates=1,depth_spvs=False):
        super().__init__()
        
        # loss parameters
        self.lam_descs=lam_descs
        self.lam_fb_descs=lam_fb_descs
        self.lam_kpts=lam_kpts
        self.lam_heatmap=lam_heatmap
        self.lam_normals=lam_normals
        self.lam_coordinates=lam_coordinates
        self.lam_fb_coordinates=lam_fb_coordinates
        self.depth_spvs=depth_spvs
        self.running_descs_loss=0
        self.running_kpts_loss=0
        self.running_heatmaps_loss=0
        self.loss_descs=0
        self.loss_fb_descs=0
        self.loss_kpts=0
        self.loss_heatmaps=0
        self.loss_normals=0
        self.loss_coordinates=0
        self.loss_fb_coordinates=0
        self.acc_coarse=0
        self.acc_fb_coarse=0
        self.acc_kpt=0
        self.acc_coordinates=0
        self.acc_fb_coordinates=0
        
        # device
        self.dev=device
        
    
    def check_accuracy(self,m1,m2,pts1=None,pts2=None,plot=False):
        with torch.no_grad():
            #dist_mat = torch.cdist(X,Y)
            dist_mat = m1 @ m2.t()
            nn = torch.argmax(dist_mat, dim=1)
            #nn = torch.argmin(dist_mat, dim=1)
            correct = nn == torch.arange(len(m1), device = m1.device)

            if pts1 is not None and plot:
                import matplotlib.pyplot as plt
                canvas = torch.zeros((60, 80),device=m1.device)
                pts1 = pts1[~correct]
                canvas[pts1[:,1].long(), pts1[:,0].long()] = 1
                canvas = canvas.cpu().numpy()
                plt.imshow(canvas), plt.show()

            acc = correct.sum().item() / len(m1)
            return acc    
    
    def compute_descriptors_loss(self,descs1,descs2,pts):
        loss=[]
        acc=0
        B,_,H,W=descs1.shape
        conf_list=[]
        
        for b in range(B):
            pts1,pts2=pts[b][:,:2],pts[b][:,2:]
            m1=descs1[b,:,pts1[:,1].long(),pts1[:,0].long()].permute(1,0)
            m2=descs2[b,:,pts2[:,1].long(),pts2[:,0].long()].permute(1,0)
            
            loss_per,conf_per=dual_softmax_loss(m1,m2)
            loss.append(loss_per.unsqueeze(0))
            conf_list.append(conf_per)
            
            acc_coarse_per=self.check_accuracy(m1,m2)
            acc += acc_coarse_per
            
        loss=torch.cat(loss,dim=-1).mean()
        acc /= B
        return loss,acc,conf_list
    
    
    def alike_distill_loss(self,kpts,alike_kpts):
        C, H, W = kpts.shape
        kpts = kpts.permute(1,2,0)
        # get ALike keypoints
        with torch.no_grad():
            labels = torch.ones((H, W), dtype = torch.long, device = kpts.device) * 64 # -> Default is non-keypoint (bin 64)
            offsets = (((alike_kpts/8) - (alike_kpts/8).long())*8).long()
            offsets =  offsets[:, 0] + 8*offsets[:, 1]  # Linear IDX
            labels[(alike_kpts[:,1]/8).long(), (alike_kpts[:,0]/8).long()] = offsets

        kpts = kpts.view(-1,C)
        labels = labels.view(-1)

        mask = labels < 64
        idxs_pos = mask.nonzero().flatten()
        idxs_neg = (~mask).nonzero().flatten()
        perm = torch.randperm(idxs_neg.size(0))[:len(idxs_pos)//32]
        idxs_neg = idxs_neg[perm]
        idxs = torch.cat([idxs_pos, idxs_neg])

        kpts = kpts[idxs]
        labels = labels[idxs]

        with torch.no_grad():
            predicted = kpts.max(dim=-1)[1]
            acc =  (labels == predicted)
            acc = acc.sum() / len(acc)

        kpts = F.log_softmax(kpts,dim=-1)
        loss = F.nll_loss(kpts, labels, reduction = 'mean')

        return loss, acc
    
    
    def compute_keypoints_loss(self,kpts1,kpts2,alike_kpts1,alike_kpts2):
        loss=[]
        acc=0
        B,_,H,W=kpts1.shape
        
        for b in range(B):
            loss_per1,acc_per1=self.alike_distill_loss(kpts1[b],alike_kpts1[b])
            loss_per2,acc_per2=self.alike_distill_loss(kpts2[b],alike_kpts2[b])
            loss_per=(loss_per1+loss_per2)
            acc_per=(acc_per1+acc_per2)/2
            loss.append(loss_per.unsqueeze(0))
            acc += acc_per
            
        loss=torch.cat(loss,dim=-1).mean()
        acc /= B
        return loss,acc
    
    
    def compute_heatmaps_loss(self,heatmaps1,heatmaps2,pts,conf_list):
        loss=[]
        B,_,H,W=heatmaps1.shape
        
        for b in range(B):
            pts1,pts2=pts[b][:,:2],pts[b][:,2:]
            h1=heatmaps1[b,0,pts1[:,1].long(),pts1[:,0].long()]
            h2=heatmaps2[b,0,pts2[:,1].long(),pts2[:,0].long()]
            
            conf=conf_list[b]
            loss_per1=F.l1_loss(h1,conf)
            loss_per2=F.l1_loss(h2,conf)
            loss_per=(loss_per1+loss_per2)
            loss.append(loss_per.unsqueeze(0))
            
        loss=torch.cat(loss,dim=-1).mean()
        return loss
    
    
    def normal_loss(self,normal,target_normal):
        # import pdb;pdb.set_trace()
        normal = normal.permute(1, 2, 0)
        target_normal = target_normal.permute(1,2,0)
        # loss = F.l1_loss(d_feat, depth_anything_normal_feat)
        dot = torch.cosine_similarity(normal, target_normal, dim=2)
        valid_mask = target_normal[:, :, 0].float() \
                    * (dot.detach() < 0.999).float() \
                    * (dot.detach() > -0.999).float()
        valid_mask = valid_mask > 0.0
        al = torch.acos(dot[valid_mask])
        loss = torch.mean(al)
        return loss
    
    
    def compute_normals_loss(self,normals1,normals2,DA_normals1,DA_normals2,megadepth_batch_size,coco_batch_size):
        loss=[]
        
        # import pdb;pdb.set_trace()
        
        # only MegaDepth image need depth-normal
        normals1=normals1[coco_batch_size:,...]
        normals2=normals2[coco_batch_size:,...]
        for b in range(len(DA_normals1)):
            normal1,normal2=normals1[b],normals2[b]
            loss_per1=self.normal_loss(normal1,DA_normals1[b].permute(2,0,1))
            loss_per2=self.normal_loss(normal2,DA_normals2[b].permute(2,0,1))
            loss_per=(loss_per1+loss_per2)
            loss.append(loss_per.unsqueeze(0))
        
        loss=torch.cat(loss,dim=-1).mean()
        return loss
    
    
    def coordinate_loss(self,coordinate,conf,pts1):
        with torch.no_grad():
            coordinate_detached = pts1 * 8
            offset_detached = (coordinate_detached/8) - (coordinate_detached/8).long()
            offset_detached = (offset_detached * 8).long()
            label = offset_detached[:, 0] + 8*offset_detached[:, 1]

        #pdb.set_trace()
        coordinate_log = F.log_softmax(coordinate, dim=-1)

        predicted = coordinate.max(dim=-1)[1]
        acc =  (label == predicted)
        acc = acc[conf > 0.1]
        acc = acc.sum() / len(acc)

        loss = F.nll_loss(coordinate_log, label, reduction = 'none')
        
        #Weight loss by confidence, giving more emphasis on reliable matches
        conf = conf / conf.sum()
        loss = (loss * conf).sum()

        return loss*2., acc
    
    def compute_coordinates_loss(self,coordinates,pts,conf_list):
        loss=[]
        acc=0
        B,_,H,W=coordinates.shape
        
        for b in range(B):
            pts1,pts2=pts[b][:,:2],pts[b][:,2:]
            coordinate=coordinates[b,:,pts1[:,1].long(),pts1[:,0].long()].permute(1,0)
            conf=conf_list[b]
            
            loss_per,acc_per=self.coordinate_loss(coordinate,conf,pts1)
            loss.append(loss_per.unsqueeze(0))
            acc += acc_per
            
        loss=torch.cat(loss,dim=-1).mean()
        acc /= B
        
        return loss,acc
        
        
    def forward(self,
                descs1,fb_descs1,kpts1,normals1,
                descs2,fb_descs2,kpts2,normals2,
                pts,coordinates,fb_coordinates,
                alike_kpts1,alike_kpts2,
                DA_normals1,DA_normals2,
                megadepth_batch_size,coco_batch_size
                ):
        # import pdb;pdb.set_trace()
        self.loss_descs,self.acc_coarse,conf_list=self.compute_descriptors_loss(descs1,descs2,pts)
        self.loss_fb_descs,self.acc_fb_coarse,fb_conf_list=self.compute_descriptors_loss(fb_descs1,fb_descs2,pts)
        
        # start=time.perf_counter()
        self.loss_kpts,self.acc_kpt=self.compute_keypoints_loss(kpts1,kpts2,alike_kpts1,alike_kpts2)
        # end=time.perf_counter()
        # print(f"kpts loss cost {end-start} seconds")
        
        # start=time.perf_counter()
        self.loss_normals=self.compute_normals_loss(normals1,normals2,DA_normals1,DA_normals2,megadepth_batch_size,coco_batch_size)
        # end=time.perf_counter()
        # print(f"normal loss cost {end-start} seconds")
        
        self.loss_coordinates,self.acc_coordinates=self.compute_coordinates_loss(coordinates,pts,conf_list)
        self.loss_fb_coordinates,self.acc_fb_coordinates=self.compute_coordinates_loss(fb_coordinates,pts,fb_conf_list)
        
        return {
            'loss_descs':self.lam_descs*self.loss_descs,
            'acc_coarse':self.acc_coarse,
            'loss_coordinates':self.lam_coordinates*self.loss_coordinates,
            'acc_coordinates':self.acc_coordinates,
            'loss_fb_descs':self.lam_fb_descs*self.loss_fb_descs,
            'acc_fb_coarse':self.acc_fb_coarse,
            'loss_fb_coordinates':self.lam_fb_coordinates*self.loss_fb_coordinates,
            'acc_fb_coordinates':self.acc_fb_coordinates,
            'loss_kpts':self.lam_kpts*self.loss_kpts,
            'acc_kpt':self.acc_kpt,
            'loss_normals':self.lam_normals*self.loss_normals,
        }