File size: 11,127 Bytes
499e141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from loguru import logger

import torch
import torch.nn as nn
import torch.nn.functional as F

from kornia.geometry.subpix import dsnt
from kornia.utils.grid import create_meshgrid


class LoFTRLoss(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config  # config under the global namespace

        self.loss_config = config['loftr']['loss']
        self.match_type = 'dual_softmax'
        self.sparse_spvs = self.config['loftr']['match_coarse']['sparse_spvs']
        self.fine_sparse_spvs = self.config['loftr']['match_fine']['sparse_spvs']
        
        # coarse-level
        self.correct_thr = self.loss_config['fine_correct_thr']
        self.c_pos_w = self.loss_config['pos_weight']
        self.c_neg_w = self.loss_config['neg_weight']
        # coarse_overlap_weight
        self.overlap_weightc = self.config['loftr']['loss']['coarse_overlap_weight']
        self.overlap_weightf = self.config['loftr']['loss']['fine_overlap_weight']
        # subpixel-level
        self.local_regressw = self.config['loftr']['fine_window_size']
        self.local_regress_temperature = self.config['loftr']['match_fine']['local_regress_temperature']
        

    def compute_coarse_loss(self, conf, conf_gt, weight=None, overlap_weight=None):
        """ Point-wise CE / Focal Loss with 0 / 1 confidence as gt.
        Args:
            conf (torch.Tensor): (N, HW0, HW1) / (N, HW0+1, HW1+1)
            conf_gt (torch.Tensor): (N, HW0, HW1)
            weight (torch.Tensor): (N, HW0, HW1)
        """
        pos_mask, neg_mask = conf_gt == 1, conf_gt == 0
        del conf_gt
        # logger.info(f'real sum of conf_matrix_c_gt: {pos_mask.sum().item()}')
        c_pos_w, c_neg_w = self.c_pos_w, self.c_neg_w
        # corner case: no gt coarse-level match at all
        if not pos_mask.any():  # assign a wrong gt
            pos_mask[0, 0, 0] = True
            if weight is not None:
                weight[0, 0, 0] = 0.
            c_pos_w = 0.
        if not neg_mask.any():
            neg_mask[0, 0, 0] = True
            if weight is not None:
                weight[0, 0, 0] = 0.
            c_neg_w = 0.

        if self.loss_config['coarse_type'] == 'focal':
            conf = torch.clamp(conf, 1e-6, 1-1e-6)
            alpha = self.loss_config['focal_alpha']
            gamma = self.loss_config['focal_gamma']
            
            if self.sparse_spvs:
                pos_conf = conf[pos_mask]
                loss_pos = - alpha * torch.pow(1 - pos_conf, gamma) * pos_conf.log()
                # handle loss weights
                if weight is not None:
                    # Different from dense-spvs, the loss w.r.t. padded regions aren't directly zeroed out,
                    # but only through manually setting corresponding regions in sim_matrix to '-inf'.
                    loss_pos = loss_pos * weight[pos_mask]
                if self.overlap_weightc:
                    loss_pos = loss_pos * overlap_weight # already been masked slice in supervision

                loss = c_pos_w * loss_pos.mean()
                return loss
            else:  # dense supervision
                loss_pos = - alpha * torch.pow(1 - conf[pos_mask], gamma) * (conf[pos_mask]).log()
                loss_neg = - alpha * torch.pow(conf[neg_mask], gamma) * (1 - conf[neg_mask]).log()
                logger.info("conf_pos_c: {loss_pos}, conf_neg_c: {loss_neg}".format(loss_pos=conf[pos_mask].mean(), loss_neg=conf[neg_mask].mean()))
                if weight is not None:
                    loss_pos = loss_pos * weight[pos_mask]
                    loss_neg = loss_neg * weight[neg_mask]
                if self.overlap_weightc:
                    loss_pos = loss_pos * overlap_weight # already been masked slice in supervision

                loss_pos_mean, loss_neg_mean = loss_pos.mean(), loss_neg.mean()
                logger.info("conf_pos_c: {loss_pos}, conf_neg_c: {loss_neg}".format(loss_pos=conf[pos_mask].mean(), loss_neg=conf[neg_mask].mean()))
                return c_pos_w * loss_pos_mean + c_neg_w * loss_neg_mean
                # each negative element occupy a smaller propotion than positive elements. => higher negative loss weight needed
        else:
            raise ValueError('Unknown coarse loss: {type}'.format(type=self.loss_config['coarse_type']))

    def compute_fine_loss(self, conf_matrix_f, conf_matrix_f_gt, overlap_weight=None):
        """
        Args:
            conf_matrix_f (torch.Tensor): [m, WW, WW] <x, y>
            conf_matrix_f_gt (torch.Tensor): [m, WW, WW] <x, y>
        """
        if conf_matrix_f_gt.shape[0] == 0:
            if self.training:  # this seldomly happen during training, since we pad prediction with gt
                            # sometimes there is not coarse-level gt at all.
                logger.warning("assign a false supervision to avoid ddp deadlock")
                pass
            else:
                return None
        pos_mask, neg_mask = conf_matrix_f_gt == 1, conf_matrix_f_gt == 0
        del conf_matrix_f_gt
        c_pos_w, c_neg_w = self.c_pos_w, self.c_neg_w
        
        if not pos_mask.any():  # assign a wrong gt
            pos_mask[0, 0, 0] = True
            c_pos_w = 0.
        if not neg_mask.any():
            neg_mask[0, 0, 0] = True
            c_neg_w = 0.

        conf = torch.clamp(conf_matrix_f, 1e-6, 1-1e-6)
        alpha = self.loss_config['focal_alpha']
        gamma = self.loss_config['focal_gamma']
        
        if self.fine_sparse_spvs:
            loss_pos = - alpha * torch.pow(1 - conf[pos_mask], gamma) * (conf[pos_mask]).log()
            if self.overlap_weightf:
                loss_pos = loss_pos * overlap_weight # already been masked slice in supervision
            return c_pos_w * loss_pos.mean()
        else:
            loss_pos = - alpha * torch.pow(1 - conf[pos_mask], gamma) * (conf[pos_mask]).log()
            loss_neg = - alpha * torch.pow(conf[neg_mask], gamma) * (1 - conf[neg_mask]).log()
            logger.info("conf_pos_f: {loss_pos}, conf_neg_f: {loss_neg}".format(loss_pos=conf[pos_mask].mean(), loss_neg=conf[neg_mask].mean()))
            if self.overlap_weightf:
                loss_pos = loss_pos * overlap_weight # already been masked slice in supervision

            return c_pos_w * loss_pos.mean() + c_neg_w * loss_neg.mean()

    
    def _compute_local_loss_l2(self, expec_f, expec_f_gt):
        """
        Args:
            expec_f (torch.Tensor): [M, 2] <x, y>
            expec_f_gt (torch.Tensor): [M, 2] <x, y>
        """
        correct_mask = torch.linalg.norm(expec_f_gt, ord=float('inf'), dim=1) < self.correct_thr
        if correct_mask.sum() == 0:
            if self.training:  # this seldomly happen when training, since we pad prediction with gt
                logger.warning("assign a false supervision to avoid ddp deadlock")
                correct_mask[0] = True
            else:
                return None
        offset_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask]) ** 2).sum(-1)
        return offset_l2.mean()
    
    @torch.no_grad()
    def compute_c_weight(self, data):
        """ compute element-wise weights for computing coarse-level loss. """
        if 'mask0' in data:
            c_weight = (data['mask0'].flatten(-2)[..., None] * data['mask1'].flatten(-2)[:, None])
        else:
            c_weight = None
        return c_weight

    def forward(self, data):
        """
        Update:
            data (dict): update{
                'loss': [1] the reduced loss across a batch,
                'loss_scalars' (dict): loss scalars for tensorboard_record
            }
        """
        loss_scalars = {}
        # 0. compute element-wise loss weight
        c_weight = self.compute_c_weight(data)

        # 1. coarse-level loss
        if self.overlap_weightc:
            loss_c = self.compute_coarse_loss(
                data['conf_matrix_with_bin'] if self.sparse_spvs and self.match_type == 'sinkhorn' \
                    else data['conf_matrix'],
                data['conf_matrix_gt'],
                weight=c_weight, overlap_weight=data['conf_matrix_error_gt'])
        
        else:
            loss_c = self.compute_coarse_loss(
                data['conf_matrix_with_bin'] if self.sparse_spvs and self.match_type == 'sinkhorn' \
                    else data['conf_matrix'],
                data['conf_matrix_gt'],
                weight=c_weight)

        loss = loss_c * self.loss_config['coarse_weight']
        loss_scalars.update({"loss_c": loss_c.clone().detach().cpu()})
        
        # 2. pixel-level loss (first-stage refinement)
        if self.overlap_weightf:
            loss_f = self.compute_fine_loss(data['conf_matrix_f'], data['conf_matrix_f_gt'], data['conf_matrix_f_error_gt'])
        else:
            loss_f = self.compute_fine_loss(data['conf_matrix_f'], data['conf_matrix_f_gt'])
        if loss_f is not None:
            loss += loss_f * self.loss_config['fine_weight']
            loss_scalars.update({"loss_f":  loss_f.clone().detach().cpu()})
        else:
            assert self.training is False
            loss_scalars.update({'loss_f': torch.tensor(1.)})  # 1 is the upper bound

        # 3. subpixel-level loss (second-stage refinement)
        # we calculate subpixel-level loss for all pixel-level gt
        if 'expec_f' not in data:
            sim_matrix_f, m_ids, i_ids, j_ids_di, j_ids_dj = data['sim_matrix_ff'], data['m_ids_f'], data['i_ids_f'], data['j_ids_f_di'], data['j_ids_f_dj']
            del data['sim_matrix_ff'], data['m_ids_f'], data['i_ids_f'], data['j_ids_f_di'], data['j_ids_f_dj']
            delta = create_meshgrid(3, 3, True, sim_matrix_f.device).to(torch.long) # [1, 3, 3, 2]
            m_ids = m_ids[...,None,None].expand(-1, 3, 3)
            i_ids = i_ids[...,None,None].expand(-1, 3, 3)
            # Note that j_ids_di & j_ids_dj in (i, j) format while delta in (x, y) format
            j_ids_di = j_ids_di[...,None,None].expand(-1, 3, 3) + delta[None, ..., 1]
            j_ids_dj = j_ids_dj[...,None,None].expand(-1, 3, 3) + delta[None, ..., 0]

            sim_matrix_f = sim_matrix_f.reshape(-1, self.local_regressw*self.local_regressw, self.local_regressw+2, self.local_regressw+2) # [M, WW, W+2, W+2]
            sim_matrix_f = sim_matrix_f[m_ids, i_ids, j_ids_di, j_ids_dj]
            sim_matrix_f = sim_matrix_f.reshape(-1, 9)

            sim_matrix_f = F.softmax(sim_matrix_f / self.local_regress_temperature, dim=-1)
            heatmap = sim_matrix_f.reshape(-1, 3, 3)
            
            # compute coordinates from heatmap
            coords_normalized = dsnt.spatial_expectation2d(heatmap[None], True)[0]
            data.update({'expec_f': coords_normalized})
        loss_l = self._compute_local_loss_l2(data['expec_f'], data['expec_f_gt'])

        loss += loss_l * self.loss_config['local_weight']
        loss_scalars.update({"loss_l":  loss_l.clone().detach().cpu()})

        loss_scalars.update({'loss': loss.clone().detach().cpu()})
        data.update({"loss": loss, "loss_scalars": loss_scalars})