File size: 12,435 Bytes
499e141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from math import log
from loguru import logger as loguru_logger

import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from kornia.utils import create_meshgrid
from src.utils.plotting import make_matching_figures

from .geometry import warp_kpts

from kornia.geometry.subpix import dsnt
from kornia.utils.grid import create_meshgrid

def static_vars(**kwargs):
    def decorate(func):
        for k in kwargs:
            setattr(func, k, kwargs[k])
        return func
    return decorate

##############  ↓  Coarse-Level supervision  ↓  ##############


@torch.no_grad()
def mask_pts_at_padded_regions(grid_pt, mask):
    """For megadepth dataset, zero-padding exists in images"""
    mask = repeat(mask, 'n h w -> n (h w) c', c=2)
    grid_pt[~mask.bool()] = 0
    return grid_pt


@torch.no_grad()
def spvs_coarse(data, config):
    """
    Update:
        data (dict): {
            "conf_matrix_gt": [N, hw0, hw1],
            'spv_b_ids': [M]
            'spv_i_ids': [M]
            'spv_j_ids': [M]
            'spv_w_pt0_i': [N, hw0, 2], in original image resolution
            'spv_pt1_i': [N, hw1, 2], in original image resolution
        }
        
    NOTE:
        - for scannet dataset, there're 3 kinds of resolution {i, c, f}
        - for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f}
    """
    # 1. misc
    device = data['image0'].device
    N, _, H0, W0 = data['image0'].shape
    _, _, H1, W1 = data['image1'].shape
    scale = config['LOFTR']['RESOLUTION'][0]
    scale0 = scale * data['scale0'][:, None] if 'scale0' in data else scale
    scale1 = scale * data['scale1'][:, None] if 'scale1' in data else scale
    h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1])

    # 2. warp grids
    # create kpts in meshgrid and resize them to image resolution
    grid_pt0_c = create_meshgrid(h0, w0, False, device).reshape(1, h0*w0, 2).repeat(N, 1, 1)    # [N, hw, 2]
    grid_pt0_i = scale0 * grid_pt0_c
    grid_pt1_c = create_meshgrid(h1, w1, False, device).reshape(1, h1*w1, 2).repeat(N, 1, 1)
    grid_pt1_i = scale1 * grid_pt1_c

    # mask padded region to (0, 0), so no need to manually mask conf_matrix_gt
    if 'mask0' in data:
        grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data['mask0'])
        grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data['mask1'])

    # warp kpts bi-directionally and resize them to coarse-level resolution
    # (no depth consistency check, since it leads to worse results experimentally)
    # (unhandled edge case: points with 0-depth will be warped to the left-up corner)
    _, w_pt0_i = warp_kpts(grid_pt0_i, data['depth0'], data['depth1'], data['T_0to1'], data['K0'], data['K1'])
    _, w_pt1_i = warp_kpts(grid_pt1_i, data['depth1'], data['depth0'], data['T_1to0'], data['K1'], data['K0'])
    w_pt0_c = w_pt0_i / scale1
    w_pt1_c = w_pt1_i / scale0

    # 3. check if mutual nearest neighbor
    w_pt0_c_round = w_pt0_c[:, :, :].round()
    # calculate the overlap area between warped patch and grid patch as the loss weight.
    # (larger overlap area between warped patches and grid patch with higher weight)
    # (overlap area range from [0, 1] rather than [0.25, 1] as the penalty of warped kpts fall on midpoint of two grid kpts)
    if config.LOFTR.LOSS.COARSE_OVERLAP_WEIGHT:
        w_pt0_c_error = (1.0 - 2*torch.abs(w_pt0_c - w_pt0_c_round)).prod(-1)
    w_pt0_c_round = w_pt0_c_round[:, :, :].long()
    nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1

    w_pt1_c_round = w_pt1_c[:, :, :].round().long()
    nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0

    # corner case: out of boundary
    def out_bound_mask(pt, w, h):
        return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h)
    nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0
    nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0

    loop_back = torch.stack([nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0)
    correct_0to1 = loop_back == torch.arange(h0*w0, device=device)[None].repeat(N, 1)
    correct_0to1[:, 0] = False  # ignore the top-left corner

    # 4. construct a gt conf_matrix
    conf_matrix_gt = torch.zeros(N, h0*w0, h1*w1, device=device)
    b_ids, i_ids = torch.where(correct_0to1 != 0)
    j_ids = nearest_index1[b_ids, i_ids]

    conf_matrix_gt[b_ids, i_ids, j_ids] = 1
    data.update({'conf_matrix_gt': conf_matrix_gt})

    # use overlap area as loss weight
    if config.LOFTR.LOSS.COARSE_OVERLAP_WEIGHT:
        conf_matrix_error_gt = w_pt0_c_error[b_ids, i_ids]  # weight range: [0.0, 1.0]
        data.update({'conf_matrix_error_gt': conf_matrix_error_gt})


    # 5. save coarse matches(gt) for training fine level
    if len(b_ids) == 0:
        loguru_logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}")
        # this won't affect fine-level loss calculation
        b_ids = torch.tensor([0], device=device)
        i_ids = torch.tensor([0], device=device)
        j_ids = torch.tensor([0], device=device)

    data.update({
        'spv_b_ids': b_ids,
        'spv_i_ids': i_ids,
        'spv_j_ids': j_ids
    })

    # 6. save intermediate results (for fast fine-level computation)
    data.update({
        'spv_w_pt0_i': w_pt0_i,
        'spv_pt1_i': grid_pt1_i
    })


def compute_supervision_coarse(data, config):
    assert len(set(data['dataset_name'])) == 1, "Do not support mixed datasets training!"
    data_source = data['dataset_name'][0]
    if data_source.lower() in ['scannet', 'megadepth']:
        spvs_coarse(data, config)
    else:
        raise ValueError(f'Unknown data source: {data_source}')


##############  ↓  Fine-Level supervision  ↓  ##############

@static_vars(counter = 0)
@torch.no_grad()
def spvs_fine(data, config, logger = None):
    """
    Update:
        data (dict):{
            "expec_f_gt": [M, 2], used as subpixel-level gt
            "conf_matrix_f_gt": [M, WW, WW], M is the number of all coarse-level gt matches
            "conf_matrix_f_error_gt": [Mp], Mp is the number of all pixel-level gt matches
            "m_ids_f": [Mp]
            "i_ids_f": [Mp]
            "j_ids_f_di": [Mp]
            "j_ids_f_dj": [Mp]
            }
    """
    # 1. misc
    pt1_i = data['spv_pt1_i']
    W = config['LOFTR']['FINE_WINDOW_SIZE']
    WW = W*W
    scale = config['LOFTR']['RESOLUTION'][1]
    device = data['image0'].device
    N, _, H0, W0 = data['image0'].shape
    _, _, H1, W1 = data['image1'].shape
    hf0, wf0, hf1, wf1 = data['hw0_f'][0], data['hw0_f'][1], data['hw1_f'][0], data['hw1_f'][1]  # h, w of fine feature
    assert not config.LOFTR.ALIGN_CORNER, 'only support training with align_corner=False for now.'

    # 2. get coarse prediction
    b_ids, i_ids, j_ids = data['b_ids'], data['i_ids'], data['j_ids']
    scalei0 = scale * data['scale0'][b_ids] if 'scale0' in data else scale
    scalei1 = scale * data['scale1'][b_ids] if 'scale1' in data else scale

    # 3. compute gt
    m = b_ids.shape[0]
    if m == 0:  # special case: there is no coarse gt
        conf_matrix_f_gt = torch.zeros(m, WW, WW, device=device)

        data.update({'conf_matrix_f_gt': conf_matrix_f_gt})
        if config.LOFTR.LOSS.FINE_OVERLAP_WEIGHT:
            conf_matrix_f_error_gt = torch.zeros(1, device=device)
            data.update({'conf_matrix_f_error_gt': conf_matrix_f_error_gt})
        
        data.update({'expec_f': torch.zeros(1, 2, device=device)})
        data.update({'expec_f_gt': torch.zeros(1, 2, device=device)})
    else:
        grid_pt0_f = create_meshgrid(hf0, wf0, False, device) - W // 2 + 0.5 # [1, hf0, wf0, 2] # use fine coordinates
        grid_pt0_f = rearrange(grid_pt0_f, 'n h w c -> n c h w')
        # 1. unfold(crop) all local windows
        if config.LOFTR.ALIGN_CORNER is False: # even windows
            assert W==8
            grid_pt0_f_unfold = F.unfold(grid_pt0_f, kernel_size=(W, W), stride=W, padding=0)
        grid_pt0_f_unfold = rearrange(grid_pt0_f_unfold, 'n (c ww) l -> n l ww c', ww=W**2) # [1, hc0*wc0, W*W, 2]
        grid_pt0_f_unfold = repeat(grid_pt0_f_unfold[0], 'l ww c -> N l ww c', N=N)

        # 2. select only the predicted matches
        grid_pt0_f_unfold = grid_pt0_f_unfold[data['b_ids'], data['i_ids']]  # [m, ww, 2]
        grid_pt0_f_unfold = scalei0[:,None,:] * grid_pt0_f_unfold  # [m, ww, 2]
        
        # 3. warp grids and get covisible & depth_consistent mask
        correct_0to1_f = torch.zeros(m, WW, device=device, dtype=torch.bool)
        w_pt0_i = torch.zeros(m, WW, 2, device=device, dtype=torch.float32)
        for b in range(N):
            mask = b_ids == b  # mask of each batch
            match = int(mask.sum())
            correct_0to1_f_mask, w_pt0_i_mask = warp_kpts(grid_pt0_f_unfold[mask].reshape(1,-1,2), data['depth0'][[b],...],
                    data['depth1'][[b],...], data['T_0to1'][[b],...], 
                    data['K0'][[b],...], data['K1'][[b],...]) # [k, WW], [k, WW, 2]
            correct_0to1_f[mask] = correct_0to1_f_mask.reshape(match, WW)
            w_pt0_i[mask] = w_pt0_i_mask.reshape(match, WW, 2)
        
        # 4. calculate the gt index of pixel-level refinement
        delta_w_pt0_i = w_pt0_i - pt1_i[b_ids, j_ids][:,None,:] # [m, WW, 2]
        del b_ids, i_ids, j_ids
        delta_w_pt0_f = delta_w_pt0_i / scalei1[:,None,:] + W // 2 - 0.5
        delta_w_pt0_f_round = delta_w_pt0_f[:, :, :].round()
        if config.LOFTR.LOSS.FINE_OVERLAP_WEIGHT:
            # calculate the overlap area between warped patch and grid patch as the loss weight.
            w_pt0_f_error = (1.0 - 2*torch.abs(delta_w_pt0_f - delta_w_pt0_f_round)).prod(-1) # [0, 1]     
        delta_w_pt0_f_round = delta_w_pt0_f_round.long()
    
        nearest_index1 = delta_w_pt0_f_round[..., 0] + delta_w_pt0_f_round[..., 1] * W # [m, WW]
        
        # corner case: out of fine windows
        def out_bound_mask(pt, w, h):
            return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h)
        ob_mask = out_bound_mask(delta_w_pt0_f_round, W, W)
        nearest_index1[ob_mask] = 0
        correct_0to1_f[ob_mask] = 0

        m_ids, i_ids = torch.where(correct_0to1_f != 0)
        j_ids = nearest_index1[m_ids, i_ids]  # i_ids, j_ids range from [0, WW-1]
        j_ids_di, j_ids_dj = j_ids // W, j_ids % W  # further get the (i, j) index in fine windows of image1 (right image); j_ids_di, j_ids_dj range from [0, W-1]
        m_ids, i_ids, j_ids_di, j_ids_dj = m_ids.to(torch.long), i_ids.to(torch.long), j_ids_di.to(torch.long), j_ids_dj.to(torch.long)

        # expec_f_gt will be used as the gt of subpixel-level refinement
        expec_f_gt = delta_w_pt0_f - delta_w_pt0_f_round
        
        if m_ids.numel() == 0:  # special case: there is no pixel-level gt
            loguru_logger.warning(f"No groundtruth fine match found for local regress: {data['pair_names']}")
            # this won't affect fine-level loss calculation
            data.update({'expec_f': torch.zeros(1, 2, device=device)})
            data.update({'expec_f_gt': torch.zeros(1, 2, device=device)})
        else:
            expec_f_gt = expec_f_gt[m_ids, i_ids]
            data.update({"expec_f_gt": expec_f_gt})
            data.update({"m_ids_f": m_ids,
                            "i_ids_f": i_ids,
                            "j_ids_f_di": j_ids_di,
                            "j_ids_f_dj": j_ids_dj
                            })

        # 5. construct a pixel-level gt conf_matrix
        conf_matrix_f_gt = torch.zeros(m, WW, WW, device=device, dtype=torch.bool)
        conf_matrix_f_gt[m_ids, i_ids, j_ids] = 1
        data.update({'conf_matrix_f_gt': conf_matrix_f_gt})
        if config.LOFTR.LOSS.FINE_OVERLAP_WEIGHT:
            # calculate the overlap area between warped pixel and grid pixel as the loss weight.
            w_pt0_f_error = w_pt0_f_error[m_ids, i_ids]
            data.update({'conf_matrix_f_error_gt': w_pt0_f_error})
            
        if  conf_matrix_f_gt.sum() == 0:
            loguru_logger.info(f'no fine matches to supervise')
                
def compute_supervision_fine(data, config, logger=None):
    data_source = data['dataset_name'][0]
    if data_source.lower() in ['scannet', 'megadepth']:
        spvs_fine(data, config, logger)
    else:
        raise NotImplementedError