Spaces:
Running
Running
File size: 12,435 Bytes
499e141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
from math import log
from loguru import logger as loguru_logger
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from kornia.utils import create_meshgrid
from src.utils.plotting import make_matching_figures
from .geometry import warp_kpts
from kornia.geometry.subpix import dsnt
from kornia.utils.grid import create_meshgrid
def static_vars(**kwargs):
def decorate(func):
for k in kwargs:
setattr(func, k, kwargs[k])
return func
return decorate
############## β Coarse-Level supervision β ##############
@torch.no_grad()
def mask_pts_at_padded_regions(grid_pt, mask):
"""For megadepth dataset, zero-padding exists in images"""
mask = repeat(mask, 'n h w -> n (h w) c', c=2)
grid_pt[~mask.bool()] = 0
return grid_pt
@torch.no_grad()
def spvs_coarse(data, config):
"""
Update:
data (dict): {
"conf_matrix_gt": [N, hw0, hw1],
'spv_b_ids': [M]
'spv_i_ids': [M]
'spv_j_ids': [M]
'spv_w_pt0_i': [N, hw0, 2], in original image resolution
'spv_pt1_i': [N, hw1, 2], in original image resolution
}
NOTE:
- for scannet dataset, there're 3 kinds of resolution {i, c, f}
- for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f}
"""
# 1. misc
device = data['image0'].device
N, _, H0, W0 = data['image0'].shape
_, _, H1, W1 = data['image1'].shape
scale = config['LOFTR']['RESOLUTION'][0]
scale0 = scale * data['scale0'][:, None] if 'scale0' in data else scale
scale1 = scale * data['scale1'][:, None] if 'scale1' in data else scale
h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1])
# 2. warp grids
# create kpts in meshgrid and resize them to image resolution
grid_pt0_c = create_meshgrid(h0, w0, False, device).reshape(1, h0*w0, 2).repeat(N, 1, 1) # [N, hw, 2]
grid_pt0_i = scale0 * grid_pt0_c
grid_pt1_c = create_meshgrid(h1, w1, False, device).reshape(1, h1*w1, 2).repeat(N, 1, 1)
grid_pt1_i = scale1 * grid_pt1_c
# mask padded region to (0, 0), so no need to manually mask conf_matrix_gt
if 'mask0' in data:
grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data['mask0'])
grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data['mask1'])
# warp kpts bi-directionally and resize them to coarse-level resolution
# (no depth consistency check, since it leads to worse results experimentally)
# (unhandled edge case: points with 0-depth will be warped to the left-up corner)
_, w_pt0_i = warp_kpts(grid_pt0_i, data['depth0'], data['depth1'], data['T_0to1'], data['K0'], data['K1'])
_, w_pt1_i = warp_kpts(grid_pt1_i, data['depth1'], data['depth0'], data['T_1to0'], data['K1'], data['K0'])
w_pt0_c = w_pt0_i / scale1
w_pt1_c = w_pt1_i / scale0
# 3. check if mutual nearest neighbor
w_pt0_c_round = w_pt0_c[:, :, :].round()
# calculate the overlap area between warped patch and grid patch as the loss weight.
# (larger overlap area between warped patches and grid patch with higher weight)
# (overlap area range from [0, 1] rather than [0.25, 1] as the penalty of warped kpts fall on midpoint of two grid kpts)
if config.LOFTR.LOSS.COARSE_OVERLAP_WEIGHT:
w_pt0_c_error = (1.0 - 2*torch.abs(w_pt0_c - w_pt0_c_round)).prod(-1)
w_pt0_c_round = w_pt0_c_round[:, :, :].long()
nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1
w_pt1_c_round = w_pt1_c[:, :, :].round().long()
nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0
# corner case: out of boundary
def out_bound_mask(pt, w, h):
return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h)
nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0
nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0
loop_back = torch.stack([nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0)
correct_0to1 = loop_back == torch.arange(h0*w0, device=device)[None].repeat(N, 1)
correct_0to1[:, 0] = False # ignore the top-left corner
# 4. construct a gt conf_matrix
conf_matrix_gt = torch.zeros(N, h0*w0, h1*w1, device=device)
b_ids, i_ids = torch.where(correct_0to1 != 0)
j_ids = nearest_index1[b_ids, i_ids]
conf_matrix_gt[b_ids, i_ids, j_ids] = 1
data.update({'conf_matrix_gt': conf_matrix_gt})
# use overlap area as loss weight
if config.LOFTR.LOSS.COARSE_OVERLAP_WEIGHT:
conf_matrix_error_gt = w_pt0_c_error[b_ids, i_ids] # weight range: [0.0, 1.0]
data.update({'conf_matrix_error_gt': conf_matrix_error_gt})
# 5. save coarse matches(gt) for training fine level
if len(b_ids) == 0:
loguru_logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}")
# this won't affect fine-level loss calculation
b_ids = torch.tensor([0], device=device)
i_ids = torch.tensor([0], device=device)
j_ids = torch.tensor([0], device=device)
data.update({
'spv_b_ids': b_ids,
'spv_i_ids': i_ids,
'spv_j_ids': j_ids
})
# 6. save intermediate results (for fast fine-level computation)
data.update({
'spv_w_pt0_i': w_pt0_i,
'spv_pt1_i': grid_pt1_i
})
def compute_supervision_coarse(data, config):
assert len(set(data['dataset_name'])) == 1, "Do not support mixed datasets training!"
data_source = data['dataset_name'][0]
if data_source.lower() in ['scannet', 'megadepth']:
spvs_coarse(data, config)
else:
raise ValueError(f'Unknown data source: {data_source}')
############## β Fine-Level supervision β ##############
@static_vars(counter = 0)
@torch.no_grad()
def spvs_fine(data, config, logger = None):
"""
Update:
data (dict):{
"expec_f_gt": [M, 2], used as subpixel-level gt
"conf_matrix_f_gt": [M, WW, WW], M is the number of all coarse-level gt matches
"conf_matrix_f_error_gt": [Mp], Mp is the number of all pixel-level gt matches
"m_ids_f": [Mp]
"i_ids_f": [Mp]
"j_ids_f_di": [Mp]
"j_ids_f_dj": [Mp]
}
"""
# 1. misc
pt1_i = data['spv_pt1_i']
W = config['LOFTR']['FINE_WINDOW_SIZE']
WW = W*W
scale = config['LOFTR']['RESOLUTION'][1]
device = data['image0'].device
N, _, H0, W0 = data['image0'].shape
_, _, H1, W1 = data['image1'].shape
hf0, wf0, hf1, wf1 = data['hw0_f'][0], data['hw0_f'][1], data['hw1_f'][0], data['hw1_f'][1] # h, w of fine feature
assert not config.LOFTR.ALIGN_CORNER, 'only support training with align_corner=False for now.'
# 2. get coarse prediction
b_ids, i_ids, j_ids = data['b_ids'], data['i_ids'], data['j_ids']
scalei0 = scale * data['scale0'][b_ids] if 'scale0' in data else scale
scalei1 = scale * data['scale1'][b_ids] if 'scale1' in data else scale
# 3. compute gt
m = b_ids.shape[0]
if m == 0: # special case: there is no coarse gt
conf_matrix_f_gt = torch.zeros(m, WW, WW, device=device)
data.update({'conf_matrix_f_gt': conf_matrix_f_gt})
if config.LOFTR.LOSS.FINE_OVERLAP_WEIGHT:
conf_matrix_f_error_gt = torch.zeros(1, device=device)
data.update({'conf_matrix_f_error_gt': conf_matrix_f_error_gt})
data.update({'expec_f': torch.zeros(1, 2, device=device)})
data.update({'expec_f_gt': torch.zeros(1, 2, device=device)})
else:
grid_pt0_f = create_meshgrid(hf0, wf0, False, device) - W // 2 + 0.5 # [1, hf0, wf0, 2] # use fine coordinates
grid_pt0_f = rearrange(grid_pt0_f, 'n h w c -> n c h w')
# 1. unfold(crop) all local windows
if config.LOFTR.ALIGN_CORNER is False: # even windows
assert W==8
grid_pt0_f_unfold = F.unfold(grid_pt0_f, kernel_size=(W, W), stride=W, padding=0)
grid_pt0_f_unfold = rearrange(grid_pt0_f_unfold, 'n (c ww) l -> n l ww c', ww=W**2) # [1, hc0*wc0, W*W, 2]
grid_pt0_f_unfold = repeat(grid_pt0_f_unfold[0], 'l ww c -> N l ww c', N=N)
# 2. select only the predicted matches
grid_pt0_f_unfold = grid_pt0_f_unfold[data['b_ids'], data['i_ids']] # [m, ww, 2]
grid_pt0_f_unfold = scalei0[:,None,:] * grid_pt0_f_unfold # [m, ww, 2]
# 3. warp grids and get covisible & depth_consistent mask
correct_0to1_f = torch.zeros(m, WW, device=device, dtype=torch.bool)
w_pt0_i = torch.zeros(m, WW, 2, device=device, dtype=torch.float32)
for b in range(N):
mask = b_ids == b # mask of each batch
match = int(mask.sum())
correct_0to1_f_mask, w_pt0_i_mask = warp_kpts(grid_pt0_f_unfold[mask].reshape(1,-1,2), data['depth0'][[b],...],
data['depth1'][[b],...], data['T_0to1'][[b],...],
data['K0'][[b],...], data['K1'][[b],...]) # [k, WW], [k, WW, 2]
correct_0to1_f[mask] = correct_0to1_f_mask.reshape(match, WW)
w_pt0_i[mask] = w_pt0_i_mask.reshape(match, WW, 2)
# 4. calculate the gt index of pixel-level refinement
delta_w_pt0_i = w_pt0_i - pt1_i[b_ids, j_ids][:,None,:] # [m, WW, 2]
del b_ids, i_ids, j_ids
delta_w_pt0_f = delta_w_pt0_i / scalei1[:,None,:] + W // 2 - 0.5
delta_w_pt0_f_round = delta_w_pt0_f[:, :, :].round()
if config.LOFTR.LOSS.FINE_OVERLAP_WEIGHT:
# calculate the overlap area between warped patch and grid patch as the loss weight.
w_pt0_f_error = (1.0 - 2*torch.abs(delta_w_pt0_f - delta_w_pt0_f_round)).prod(-1) # [0, 1]
delta_w_pt0_f_round = delta_w_pt0_f_round.long()
nearest_index1 = delta_w_pt0_f_round[..., 0] + delta_w_pt0_f_round[..., 1] * W # [m, WW]
# corner case: out of fine windows
def out_bound_mask(pt, w, h):
return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h)
ob_mask = out_bound_mask(delta_w_pt0_f_round, W, W)
nearest_index1[ob_mask] = 0
correct_0to1_f[ob_mask] = 0
m_ids, i_ids = torch.where(correct_0to1_f != 0)
j_ids = nearest_index1[m_ids, i_ids] # i_ids, j_ids range from [0, WW-1]
j_ids_di, j_ids_dj = j_ids // W, j_ids % W # further get the (i, j) index in fine windows of image1 (right image); j_ids_di, j_ids_dj range from [0, W-1]
m_ids, i_ids, j_ids_di, j_ids_dj = m_ids.to(torch.long), i_ids.to(torch.long), j_ids_di.to(torch.long), j_ids_dj.to(torch.long)
# expec_f_gt will be used as the gt of subpixel-level refinement
expec_f_gt = delta_w_pt0_f - delta_w_pt0_f_round
if m_ids.numel() == 0: # special case: there is no pixel-level gt
loguru_logger.warning(f"No groundtruth fine match found for local regress: {data['pair_names']}")
# this won't affect fine-level loss calculation
data.update({'expec_f': torch.zeros(1, 2, device=device)})
data.update({'expec_f_gt': torch.zeros(1, 2, device=device)})
else:
expec_f_gt = expec_f_gt[m_ids, i_ids]
data.update({"expec_f_gt": expec_f_gt})
data.update({"m_ids_f": m_ids,
"i_ids_f": i_ids,
"j_ids_f_di": j_ids_di,
"j_ids_f_dj": j_ids_dj
})
# 5. construct a pixel-level gt conf_matrix
conf_matrix_f_gt = torch.zeros(m, WW, WW, device=device, dtype=torch.bool)
conf_matrix_f_gt[m_ids, i_ids, j_ids] = 1
data.update({'conf_matrix_f_gt': conf_matrix_f_gt})
if config.LOFTR.LOSS.FINE_OVERLAP_WEIGHT:
# calculate the overlap area between warped pixel and grid pixel as the loss weight.
w_pt0_f_error = w_pt0_f_error[m_ids, i_ids]
data.update({'conf_matrix_f_error_gt': w_pt0_f_error})
if conf_matrix_f_gt.sum() == 0:
loguru_logger.info(f'no fine matches to supervise')
def compute_supervision_fine(data, config, logger=None):
data_source = data['dataset_name'][0]
if data_source.lower() in ['scannet', 'megadepth']:
spvs_fine(data, config, logger)
else:
raise NotImplementedError |