Spaces:
Running
Running
File size: 4,730 Bytes
499e141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import torch
import argparse
from lib.models.builder import build_model
from lib.datasets.utils import correct_intrinsic_scale
from lib.models.MicKey.modules.utils.training_utils import colorize, generate_heat_map
from config.default import cfg
import numpy as np
from pathlib import Path
import cv2
def prepare_score_map(scs, img, temperature=0.5):
score_map = generate_heat_map(scs, img, temperature)
score_map = 255 * score_map.permute(1, 2, 0).numpy()
return score_map
def colorize_depth(value, vmin=None, vmax=None, cmap='magma_r', invalid_val=-99, invalid_mask=None, background_color=(0, 0, 0, 255), gamma_corrected=False, value_transform=None):
img = colorize(value, vmin, vmax, cmap, invalid_val, invalid_mask, background_color, gamma_corrected, value_transform)
shape_im = img.shape
img = np.asarray(img, np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)
img = cv2.resize(img, (shape_im[1]*14, shape_im[0]*14), interpolation=cv2.INTER_LINEAR)
return img
def read_color_image(path, resize=(540, 720)):
"""
Args:
resize (tuple): align image to depthmap, in (w, h).
Returns:
image (torch.tensor): (3, h, w)
"""
# read and resize image
cv_type = cv2.IMREAD_COLOR
image = cv2.imread(str(path), cv_type)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if resize:
image = cv2.resize(image, resize)
# (h, w, 3) -> (3, h, w) and normalized
image = torch.from_numpy(image).float().permute(2, 0, 1) / 255
return image.unsqueeze(0)
def read_intrinsics(path_intrinsics, resize=None):
Ks = {}
with Path(path_intrinsics).open('r') as f:
for line in f.readlines():
if '#' in line:
continue
line = line.strip().split(' ')
img_name = line[0]
fx, fy, cx, cy, W, H = map(float, line[1:])
K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)
if resize is not None:
K = correct_intrinsic_scale(K, resize[0] / W, resize[1] / H)
Ks[img_name] = K
return Ks
def run_demo_inference(args):
# Select device
use_cuda = torch.cuda.is_available()
device = torch.device('cuda:0' if use_cuda else 'cpu')
print('Preparing data...')
# Prepare config file
cfg.merge_from_file(args.config)
# Prepare the model
model = build_model(cfg, checkpoint=args.checkpoint)
# Load demo images
im0 = read_color_image(args.im_path_ref).to(device)
im1 = read_color_image(args.im_path_dst).to(device)
# Load intrinsics
K = read_intrinsics(args.intrinsics)
# Prepare data for MicKey
data = {}
data['image0'] = im0
data['image1'] = im1
data['K_color0'] = torch.from_numpy(K['im0.jpg']).unsqueeze(0).to(device)
data['K_color1'] = torch.from_numpy(K['im1.jpg']).unsqueeze(0).to(device)
# Run inference
print('Running MicKey relative pose estimation...')
model(data)
# Pose, inliers and score are stored in:
# data['R'] = R
# data['t'] = t
# data['inliers'] = inliers
# data['inliers_list'] = inliers_list
print('Saving depth and score maps in image directory ...')
depth0_map = colorize_depth(data['depth0_map'][0], invalid_mask=(data['depth0_map'][0] < 0.001).cpu()[0])
depth1_map = colorize_depth(data['depth1_map'][0], invalid_mask=(data['depth1_map'][0] < 0.001).cpu()[0])
score0_map = prepare_score_map(data['scr0'][0], data['image0'][0], temperature=0.5)
score1_map = prepare_score_map(data['scr1'][0], data['image1'][0], temperature=0.5)
ext_im0 = args.im_path_ref.split('.')[-1]
ext_im1 = args.im_path_dst.split('.')[-1]
cv2.imwrite(args.im_path_ref.replace(ext_im0, 'score.jpg'), score0_map)
cv2.imwrite(args.im_path_dst.replace(ext_im1, 'score.jpg'), score1_map)
cv2.imwrite(args.im_path_ref.replace(ext_im0, 'depth.jpg'), depth0_map)
cv2.imwrite(args.im_path_dst.replace(ext_im1, 'depth.jpg'), depth1_map)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--im_path_ref', help='path to reference image', default='data/toy_example/im0.jpg')
parser.add_argument('--im_path_dst', help='path to destination image', default='data/toy_example/im1.jpg')
parser.add_argument('--intrinsics', help='path to intrinsics file', default='data/toy_example/intrinsics.txt')
parser.add_argument('--config', help='path to config file', default='weights/mickey_weights/config.yaml')
parser.add_argument('--checkpoint', help='path to model checkpoint',
default='weights/mickey_weights/mickey.ckpt')
args = parser.parse_args()
run_demo_inference(args)
|