File size: 4,730 Bytes
499e141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import argparse
from lib.models.builder import build_model
from lib.datasets.utils import correct_intrinsic_scale
from lib.models.MicKey.modules.utils.training_utils import colorize, generate_heat_map
from config.default import cfg
import numpy as np
from pathlib import Path
import cv2

def prepare_score_map(scs, img, temperature=0.5):

    score_map = generate_heat_map(scs, img, temperature)

    score_map = 255 * score_map.permute(1, 2, 0).numpy()

    return score_map

def colorize_depth(value, vmin=None, vmax=None, cmap='magma_r', invalid_val=-99, invalid_mask=None, background_color=(0, 0, 0, 255), gamma_corrected=False, value_transform=None):

    img = colorize(value, vmin, vmax, cmap, invalid_val, invalid_mask, background_color, gamma_corrected, value_transform)

    shape_im = img.shape
    img = np.asarray(img, np.uint8)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)
    img = cv2.resize(img, (shape_im[1]*14, shape_im[0]*14), interpolation=cv2.INTER_LINEAR)

    return img

def read_color_image(path, resize=(540, 720)):
    """
    Args:
        resize (tuple): align image to depthmap, in (w, h).
    Returns:
        image (torch.tensor): (3, h, w)
    """
    # read and resize image
    cv_type = cv2.IMREAD_COLOR
    image = cv2.imread(str(path), cv_type)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    if resize:
        image = cv2.resize(image, resize)

    # (h, w, 3) -> (3, h, w) and normalized
    image = torch.from_numpy(image).float().permute(2, 0, 1) / 255

    return image.unsqueeze(0)

def read_intrinsics(path_intrinsics, resize=None):
    Ks = {}
    with Path(path_intrinsics).open('r') as f:
        for line in f.readlines():
            if '#' in line:
                continue

            line = line.strip().split(' ')
            img_name = line[0]
            fx, fy, cx, cy, W, H = map(float, line[1:])

            K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)
            if resize is not None:
                K = correct_intrinsic_scale(K, resize[0] / W, resize[1] / H)
            Ks[img_name] = K
    return Ks

def run_demo_inference(args):

    # Select device
    use_cuda = torch.cuda.is_available()
    device = torch.device('cuda:0' if use_cuda else 'cpu')

    print('Preparing data...')

    # Prepare config file
    cfg.merge_from_file(args.config)

    # Prepare the model
    model = build_model(cfg, checkpoint=args.checkpoint)

    # Load demo images
    im0 = read_color_image(args.im_path_ref).to(device)
    im1 = read_color_image(args.im_path_dst).to(device)

    # Load intrinsics
    K = read_intrinsics(args.intrinsics)

    # Prepare data for MicKey
    data = {}
    data['image0'] = im0
    data['image1'] = im1
    data['K_color0'] = torch.from_numpy(K['im0.jpg']).unsqueeze(0).to(device)
    data['K_color1'] = torch.from_numpy(K['im1.jpg']).unsqueeze(0).to(device)

    # Run inference
    print('Running MicKey relative pose estimation...')
    model(data)

    # Pose, inliers and score are stored in:
    # data['R'] = R
    # data['t'] = t
    # data['inliers'] = inliers
    # data['inliers_list'] = inliers_list

    print('Saving depth and score maps in image directory ...')
    depth0_map = colorize_depth(data['depth0_map'][0], invalid_mask=(data['depth0_map'][0] < 0.001).cpu()[0])
    depth1_map = colorize_depth(data['depth1_map'][0], invalid_mask=(data['depth1_map'][0] < 0.001).cpu()[0])
    score0_map = prepare_score_map(data['scr0'][0], data['image0'][0], temperature=0.5)
    score1_map = prepare_score_map(data['scr1'][0], data['image1'][0], temperature=0.5)

    ext_im0 = args.im_path_ref.split('.')[-1]
    ext_im1 = args.im_path_dst.split('.')[-1]

    cv2.imwrite(args.im_path_ref.replace(ext_im0, 'score.jpg'), score0_map)
    cv2.imwrite(args.im_path_dst.replace(ext_im1, 'score.jpg'), score1_map)

    cv2.imwrite(args.im_path_ref.replace(ext_im0, 'depth.jpg'), depth0_map)
    cv2.imwrite(args.im_path_dst.replace(ext_im1, 'depth.jpg'), depth1_map)

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--im_path_ref', help='path to reference image', default='data/toy_example/im0.jpg')
    parser.add_argument('--im_path_dst', help='path to destination image', default='data/toy_example/im1.jpg')
    parser.add_argument('--intrinsics', help='path to intrinsics file', default='data/toy_example/intrinsics.txt')
    parser.add_argument('--config', help='path to config file', default='weights/mickey_weights/config.yaml')
    parser.add_argument('--checkpoint', help='path to model checkpoint',
                        default='weights/mickey_weights/mickey.ckpt')
    args = parser.parse_args()

    run_demo_inference(args)