File size: 12,562 Bytes
499e141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# -*- coding: utf-8 -*-
# @Author  : xuelun

import math

import cv2
import torch
import random
import numpy as np

from albumentations.augmentations import functional as F

from datasets.utils import get_divisible_wh


def fast_make_matching_robust_fitting_figure(data, b_id=0, transpose=False):
    robust_fitting = True if 'inliers' in list(data.keys()) and data['inliers'] is not None else False

    gray0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.uint8)
    gray1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.uint8)
    kpts0 = data['mkpts0_f']
    kpts1 = data['mkpts1_f']

    if 'scale0' in data:
        kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()
        kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()

    if transpose:
        gray0 = cv2.rotate(gray0, cv2.ROTATE_90_COUNTERCLOCKWISE)
        gray1 = cv2.rotate(gray1, cv2.ROTATE_90_COUNTERCLOCKWISE)
        
        h0, w0 = data['hw0_i']
        h1, w1 = data['hw1_i']
        kpts0_new = np.copy(kpts0)
        kpts1_new = np.copy(kpts1)
        kpts0_new[:, 0], kpts0_new[:, 1] = kpts0[:, 1], w0 - kpts0[:, 0]
        kpts1_new[:, 0], kpts1_new[:, 1] = kpts1[:, 1], w1 - kpts1[:, 0]
        kpts0, kpts1 = kpts0_new, kpts1_new
        (h0, w0), (h1, w1) = (w0, h0), (w1, h1)
    else:
        (h0, w0), (h1, w1) = data['hw0_i'], data['hw1_i']

    rows = 3
    margin = 2
    h, w = max(h0, h1), max(w0, w1)
    H, W = margin * (rows + 1) + h * rows, margin * 3 + w * 2

    # canvas
    out = 255 * np.ones((H, W), np.uint8)

    wx = [margin, margin + w0, margin + w + margin, margin + w + margin + w1]
    hx = lambda row: margin * row + h * (row-1)
    out = np.stack([out] * 3, -1)

    sh = hx(row=1)
    color0 = (data['color0'][b_id].permute(1, 2, 0).cpu().numpy() * 255).round().astype(np.uint8)
    color1 = (data['color1'][b_id].permute(1, 2, 0).cpu().numpy() * 255).round().astype(np.uint8)
    if transpose:
        color0 = cv2.rotate(color0, cv2.ROTATE_90_COUNTERCLOCKWISE)
        color1 = cv2.rotate(color1, cv2.ROTATE_90_COUNTERCLOCKWISE)
    out[sh: sh + h0, wx[0]: wx[1]] = color0
    out[sh: sh + h1, wx[2]: wx[3]] = color1

    # only show keypoints
    sh = hx(row=2)
    mkpts0, mkpts1 = np.round(kpts0).astype(int), np.round(kpts1).astype(int)
    out[sh: sh + h0, wx[0]: wx[1]] = np.stack([gray0] * 3, -1)
    out[sh: sh + h1, wx[2]: wx[3]] = np.stack([gray1] * 3, -1)
    for (x0, y0), (x1, y1) in zip(mkpts0, mkpts1):
        # display line end-points as circles
        c = (230, 216, 132)
        cv2.circle(out, (x0, y0+sh), 1, c, -1, lineType=cv2.LINE_AA)
        cv2.circle(out, (x1 + margin + w, y1+sh), 1, c, -1, lineType=cv2.LINE_AA)

    # show keypoints and correspondences
    sh = hx(row=3)
    mkpts0, mkpts1 = np.round(kpts0).astype(int), np.round(kpts1).astype(int)
    out[sh: sh + h0, wx[0]: wx[1]] = np.stack([gray0] * 3, -1)
    out[sh: sh + h1, wx[2]: wx[3]] = np.stack([gray1] * 3, -1)
    for (x0, y0), (x1, y1) in zip(mkpts0, mkpts1):
        c = (159, 212, 252)
        cv2.line(out, (x0, y0+sh), (x1 + margin + w, y1+sh), color=c, thickness=1, lineType=cv2.LINE_AA)
    for (x0, y0), (x1, y1) in zip(mkpts0, mkpts1):
        # display line end-points as circles
        c = (230, 216, 132)
        cv2.circle(out, (x0, y0+sh), 2, c, -1, lineType=cv2.LINE_AA)
        cv2.circle(out, (x1 + margin + w, y1+sh), 2, c, -1, lineType=cv2.LINE_AA)

    # Big text.
    text = [
        f' ',
        f'#Matches {len(kpts0)}',
        f'#Matches {sum(data["inliers"][b_id])}' if robust_fitting else '',
    ]
    sc = min(H / 640., 1.0)
    Ht = int(30 * sc)  # text height
    txt_color_fg = (255, 255, 255)  # white
    txt_color_bg = (0, 0, 0)  # black
    for i, t in enumerate(text):
        cv2.putText(out, t, (int(8 * sc), Ht * (i + 1)), cv2.FONT_HERSHEY_DUPLEX, 1.0 * sc, txt_color_bg, 2, cv2.LINE_AA)
        cv2.putText(out, t, (int(8 * sc), Ht * (i + 1)), cv2.FONT_HERSHEY_DUPLEX, 1.0 * sc, txt_color_fg, 1, cv2.LINE_AA)

    fingerprint = [
        'Dataset: {}'.format(data['dataset_name'][b_id]),
        'Scene ID: {}'.format(data['scene_id'][b_id]),
        'Pair ID: {}'.format(data['pair_id'][b_id]),
        'co-visible: {:.4f}/{:.4f}'.format(data['covisible0'],
                                           data['covisible1']),
        'Image sizes: {} - {}'.format(
            tuple(reversed(data['imsize0'][b_id])) if transpose and isinstance(data['imsize0'][b_id], (list, tuple, np.ndarray)) and len(data['imsize0'][b_id]) >= 2 else data['imsize0'][b_id],
            tuple(reversed(data['imsize1'][b_id])) if transpose and isinstance(data['imsize1'][b_id], (list, tuple, np.ndarray)) and len(data['imsize1'][b_id]) >= 2 else data['imsize1'][b_id]),
        'Pair names: {}:{}'.format(data['pair_names'][0].split('/')[-1],
                                   data['pair_names'][1].split('/')[-1]),
        'Rand Scale: {} - {}'.format(data['rands0'],
                                     data['rands1']),
        'Offset: {} - {}'.format(data['offset0'].cpu().numpy(),
                                 data['offset1'].cpu().numpy()),
        'Fliped: {} - {}'.format(data['hflip0'],
                                 data['hflip1']),
        'Transposed: {}'.format(transpose)
    ]
    sc = min(H / 1280., 1.0)
    Ht = int(18 * sc)  # text height
    txt_color_fg = (255, 255, 255)  # white
    txt_color_bg = (0, 0, 0)  # black
    for i, t in enumerate(reversed(fingerprint)):
        cv2.putText(out, t, (int(8 * sc), int(H - Ht * (i + .6))), cv2.FONT_HERSHEY_SIMPLEX, .5 * sc, txt_color_bg, 2, cv2.LINE_AA)
        cv2.putText(out, t, (int(8 * sc), int(H - Ht * (i + .6))), cv2.FONT_HERSHEY_SIMPLEX, .5 * sc, txt_color_fg, 1, cv2.LINE_AA)

    return out[h+margin:]


def eudist(a, b):
    aa = np.sum(a ** 2, axis=-1, keepdims=True)
    bb = np.sum(b ** 2, axis=-1, keepdims=True).T
    cc = a @ b.T
    dist = aa + bb - 2*cc
    return dist


def covision(kpts, size):
    return (kpts[:, 0].max() - kpts[:, 0].min()) * \
           (kpts[:, 1].max() - kpts[:, 1].min()) / \
           (size[0] * size[1] + 1e-8)


view = lambda x: x.view([('', x.dtype)] * x.shape[1])


def intersected(x, y):
    intersected_ = np.intersect1d(view(x), view(y))
    z = intersected_.view(x.dtype).reshape(-1, x.shape[1])
    return z


def imread_color(path, augment_fn=None, read_size=None, source=None):
    if augment_fn is None:
        image = cv2.imread(str(path), cv2.IMREAD_COLOR) if source is None else source
        image = cv2.resize(image, read_size) if read_size is not None else image
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if source is None else image
    else:
        image = cv2.imread(str(path), cv2.IMREAD_COLOR) if source is None else source
        image = cv2.resize(image, read_size) if read_size is not None else image
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if source is None else image
        image = augment_fn(image)
    return image  # (h, w)


def get_resized_wh(w, h, resize, aug_prob):
    nh, nw = resize
    sh, sw = nh / h, nw / w
    # scale = min(sh, sw)
    scale = random.choice([sh, sw]) if aug_prob != 1.0 else min(sh, sw)
    w_new, h_new = int(round(w*scale)), int(round(h*scale))
    return w_new, h_new


def pad_bottom_right(inp, pad_size, ret_mask=False):
    mask = None
    if inp.ndim == 2:
        padded = np.zeros((pad_size[0], pad_size[1]), dtype=inp.dtype)
        padded[:inp.shape[0], :inp.shape[1]] = inp
    elif inp.ndim == 3:
        padded = np.zeros((pad_size[0], pad_size[1], inp.shape[-1]), dtype=inp.dtype)
        padded[:inp.shape[0], :inp.shape[1]] = inp
    else:
        raise NotImplementedError()

    if ret_mask:
        mask = np.zeros((pad_size[0], pad_size[1]), dtype=bool)
        mask[:inp.shape[0], :inp.shape[1]] = True

    return padded, mask


def read_images(path, max_resize, df=None, padding=True, augment_fn=None, aug_prob=0.0, flip_prob=1.0,
                is_left=None, upper_cornor=None, read_size=None, image=None):
    """
    Args:
        path: string
        max_resize (int): max image size after resied
        df (int, optional): image size division factor.
                            NOTE: this will change the final image size after img_resize
        padding (bool): If set to 'True', zero-pad resized images to squared size.
        augment_fn (callable, optional): augments images with pre-defined visual effects
        aug_prob (float, optional): probability of applying augment_fn
        flip_prob (float, optional): probability of flipping images
        is_left (bool, optional): if set to 'True', it is left image, otherwise is right image
        upper_cornor (tuple, optional): upper left corner of the image
        read_size (int, optional): read image size
        image (callable, optional): input image
    Returns:
        image (torch.tensor): (1, h, w)
        mask (torch.tensor): (h, w)
        scale (torch.tensor): [w/w_new, h/h_new]
    """
    # read image
    assert max_resize is not None
    assert isinstance(max_resize, list)
    if len(max_resize) == 1: max_resize = max_resize * 2

    w_new, h_new = get_divisible_wh(max_resize[0], max_resize[1], df)
    max_resize = [h_new, w_new]

    image = imread_color(path, augment_fn, read_size, image)  # (h,w,3) image is RGB

    # resize image
    w, h = image.shape[1], image.shape[0]
    if (h > max_resize[0]) or (w > max_resize[1]):
        w_new, h_new = get_resized_wh(w, h, max_resize, aug_prob)  # make max(w, h) to max_size
    else:
        w_new, h_new = w, h

    # random resize
    if random.uniform(0, 1) > aug_prob:
        # random rescale
        ratio = max(h / max_resize[0], w / max_resize[1])
        if type(is_left) == bool:
            if is_left:
                low, upper = (0.6 / ratio, 1.0 / ratio) if ratio < 1.0 else (0.6, 1.0)
            else:
                low, upper = (1.0 / ratio, 1.4 / ratio) if ratio < 1.0 else (1.0, 1.4)
        else:
            low, upper = (0.6 / ratio, 1.4 / ratio) if ratio < 1.0 else (0.6, 1.4)
        if not is_left and upper_cornor is not None:
            corner = upper_cornor[2:]
            upper = min(upper, min(max_resize[0]/corner[1], max_resize[1]/corner[0]))
        rands = random.uniform(low, upper)
        w_new, h_new = map(lambda x: x*rands, [w_new, h_new])
        w_new, h_new = get_divisible_wh(w_new, h_new, df)  # make image divided by df and must <= max_size
    else:
        rands = 1
        w_new, h_new = get_divisible_wh(w_new, h_new, df)
        # width, height = w_new, h_new
        # h_start = w_start = 0

    if upper_cornor is not None:
        upper_cornor = upper_cornor[:2]

    # random crop
    if h_new > max_resize[0]:
        height = max_resize[0]
        h_start = int(random.uniform(0, 1) * (h_new - max_resize[0]))
        if upper_cornor is not None:
            h_start = min(h_start, math.floor(upper_cornor[1]*(h_new/h)))
    else:
        height = h_new
        h_start = 0

    if w_new > max_resize[1]:
        width = max_resize[1]
        w_start = int(random.uniform(0, 1) * (w_new - max_resize[1]))
        if upper_cornor is not None:
            w_start = min(w_start, math.floor(upper_cornor[0]*(w_new/w)))
    else:
        width = w_new
        w_start = 0

    w_new, h_new = map(int, [w_new, h_new])
    width, height = map(int, [width, height])

    image = cv2.resize(image, (w_new, h_new))  # (w',h',3)
    image = image[h_start:h_start+height, w_start:w_start+width]

    scale = [w / w_new, h / h_new]
    offset = [w_start, h_start]

    # vertical flip
    if random.uniform(0, 1) > flip_prob:
        hflip = F.hflip_cv2 if image.ndim == 3 and image.shape[2] > 1 and image.dtype == np.uint8 else F.hflip
        image = hflip(image)
        image = F.vflip(image)
        hflip = True
        vflip = True
    else:
        hflip = False
        vflip = False

    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

    # padding
    mask = None
    if padding:
        image, _ = pad_bottom_right(image, max_resize, ret_mask=False)
        gray, mask = pad_bottom_right(gray, max_resize, ret_mask=True)
        mask = torch.from_numpy(mask)

    gray = torch.from_numpy(gray).float()[None] / 255  # (1,h,w)
    image = torch.from_numpy(image).float() / 255  # (h,w,3)
    image = image.permute(2, 0, 1)  # (3,h,w)

    offset = torch.tensor(offset, dtype=torch.float)
    scale = torch.tensor(scale, dtype=torch.float)
    resize = [height, width]

    return gray, image, scale, rands, offset, hflip, vflip, resize, mask