Spaces:
Running
Running
File size: 12,562 Bytes
499e141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# -*- coding: utf-8 -*-
# @Author : xuelun
import math
import cv2
import torch
import random
import numpy as np
from albumentations.augmentations import functional as F
from datasets.utils import get_divisible_wh
def fast_make_matching_robust_fitting_figure(data, b_id=0, transpose=False):
robust_fitting = True if 'inliers' in list(data.keys()) and data['inliers'] is not None else False
gray0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.uint8)
gray1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.uint8)
kpts0 = data['mkpts0_f']
kpts1 = data['mkpts1_f']
if 'scale0' in data:
kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()
kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()
if transpose:
gray0 = cv2.rotate(gray0, cv2.ROTATE_90_COUNTERCLOCKWISE)
gray1 = cv2.rotate(gray1, cv2.ROTATE_90_COUNTERCLOCKWISE)
h0, w0 = data['hw0_i']
h1, w1 = data['hw1_i']
kpts0_new = np.copy(kpts0)
kpts1_new = np.copy(kpts1)
kpts0_new[:, 0], kpts0_new[:, 1] = kpts0[:, 1], w0 - kpts0[:, 0]
kpts1_new[:, 0], kpts1_new[:, 1] = kpts1[:, 1], w1 - kpts1[:, 0]
kpts0, kpts1 = kpts0_new, kpts1_new
(h0, w0), (h1, w1) = (w0, h0), (w1, h1)
else:
(h0, w0), (h1, w1) = data['hw0_i'], data['hw1_i']
rows = 3
margin = 2
h, w = max(h0, h1), max(w0, w1)
H, W = margin * (rows + 1) + h * rows, margin * 3 + w * 2
# canvas
out = 255 * np.ones((H, W), np.uint8)
wx = [margin, margin + w0, margin + w + margin, margin + w + margin + w1]
hx = lambda row: margin * row + h * (row-1)
out = np.stack([out] * 3, -1)
sh = hx(row=1)
color0 = (data['color0'][b_id].permute(1, 2, 0).cpu().numpy() * 255).round().astype(np.uint8)
color1 = (data['color1'][b_id].permute(1, 2, 0).cpu().numpy() * 255).round().astype(np.uint8)
if transpose:
color0 = cv2.rotate(color0, cv2.ROTATE_90_COUNTERCLOCKWISE)
color1 = cv2.rotate(color1, cv2.ROTATE_90_COUNTERCLOCKWISE)
out[sh: sh + h0, wx[0]: wx[1]] = color0
out[sh: sh + h1, wx[2]: wx[3]] = color1
# only show keypoints
sh = hx(row=2)
mkpts0, mkpts1 = np.round(kpts0).astype(int), np.round(kpts1).astype(int)
out[sh: sh + h0, wx[0]: wx[1]] = np.stack([gray0] * 3, -1)
out[sh: sh + h1, wx[2]: wx[3]] = np.stack([gray1] * 3, -1)
for (x0, y0), (x1, y1) in zip(mkpts0, mkpts1):
# display line end-points as circles
c = (230, 216, 132)
cv2.circle(out, (x0, y0+sh), 1, c, -1, lineType=cv2.LINE_AA)
cv2.circle(out, (x1 + margin + w, y1+sh), 1, c, -1, lineType=cv2.LINE_AA)
# show keypoints and correspondences
sh = hx(row=3)
mkpts0, mkpts1 = np.round(kpts0).astype(int), np.round(kpts1).astype(int)
out[sh: sh + h0, wx[0]: wx[1]] = np.stack([gray0] * 3, -1)
out[sh: sh + h1, wx[2]: wx[3]] = np.stack([gray1] * 3, -1)
for (x0, y0), (x1, y1) in zip(mkpts0, mkpts1):
c = (159, 212, 252)
cv2.line(out, (x0, y0+sh), (x1 + margin + w, y1+sh), color=c, thickness=1, lineType=cv2.LINE_AA)
for (x0, y0), (x1, y1) in zip(mkpts0, mkpts1):
# display line end-points as circles
c = (230, 216, 132)
cv2.circle(out, (x0, y0+sh), 2, c, -1, lineType=cv2.LINE_AA)
cv2.circle(out, (x1 + margin + w, y1+sh), 2, c, -1, lineType=cv2.LINE_AA)
# Big text.
text = [
f' ',
f'#Matches {len(kpts0)}',
f'#Matches {sum(data["inliers"][b_id])}' if robust_fitting else '',
]
sc = min(H / 640., 1.0)
Ht = int(30 * sc) # text height
txt_color_fg = (255, 255, 255) # white
txt_color_bg = (0, 0, 0) # black
for i, t in enumerate(text):
cv2.putText(out, t, (int(8 * sc), Ht * (i + 1)), cv2.FONT_HERSHEY_DUPLEX, 1.0 * sc, txt_color_bg, 2, cv2.LINE_AA)
cv2.putText(out, t, (int(8 * sc), Ht * (i + 1)), cv2.FONT_HERSHEY_DUPLEX, 1.0 * sc, txt_color_fg, 1, cv2.LINE_AA)
fingerprint = [
'Dataset: {}'.format(data['dataset_name'][b_id]),
'Scene ID: {}'.format(data['scene_id'][b_id]),
'Pair ID: {}'.format(data['pair_id'][b_id]),
'co-visible: {:.4f}/{:.4f}'.format(data['covisible0'],
data['covisible1']),
'Image sizes: {} - {}'.format(
tuple(reversed(data['imsize0'][b_id])) if transpose and isinstance(data['imsize0'][b_id], (list, tuple, np.ndarray)) and len(data['imsize0'][b_id]) >= 2 else data['imsize0'][b_id],
tuple(reversed(data['imsize1'][b_id])) if transpose and isinstance(data['imsize1'][b_id], (list, tuple, np.ndarray)) and len(data['imsize1'][b_id]) >= 2 else data['imsize1'][b_id]),
'Pair names: {}:{}'.format(data['pair_names'][0].split('/')[-1],
data['pair_names'][1].split('/')[-1]),
'Rand Scale: {} - {}'.format(data['rands0'],
data['rands1']),
'Offset: {} - {}'.format(data['offset0'].cpu().numpy(),
data['offset1'].cpu().numpy()),
'Fliped: {} - {}'.format(data['hflip0'],
data['hflip1']),
'Transposed: {}'.format(transpose)
]
sc = min(H / 1280., 1.0)
Ht = int(18 * sc) # text height
txt_color_fg = (255, 255, 255) # white
txt_color_bg = (0, 0, 0) # black
for i, t in enumerate(reversed(fingerprint)):
cv2.putText(out, t, (int(8 * sc), int(H - Ht * (i + .6))), cv2.FONT_HERSHEY_SIMPLEX, .5 * sc, txt_color_bg, 2, cv2.LINE_AA)
cv2.putText(out, t, (int(8 * sc), int(H - Ht * (i + .6))), cv2.FONT_HERSHEY_SIMPLEX, .5 * sc, txt_color_fg, 1, cv2.LINE_AA)
return out[h+margin:]
def eudist(a, b):
aa = np.sum(a ** 2, axis=-1, keepdims=True)
bb = np.sum(b ** 2, axis=-1, keepdims=True).T
cc = a @ b.T
dist = aa + bb - 2*cc
return dist
def covision(kpts, size):
return (kpts[:, 0].max() - kpts[:, 0].min()) * \
(kpts[:, 1].max() - kpts[:, 1].min()) / \
(size[0] * size[1] + 1e-8)
view = lambda x: x.view([('', x.dtype)] * x.shape[1])
def intersected(x, y):
intersected_ = np.intersect1d(view(x), view(y))
z = intersected_.view(x.dtype).reshape(-1, x.shape[1])
return z
def imread_color(path, augment_fn=None, read_size=None, source=None):
if augment_fn is None:
image = cv2.imread(str(path), cv2.IMREAD_COLOR) if source is None else source
image = cv2.resize(image, read_size) if read_size is not None else image
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if source is None else image
else:
image = cv2.imread(str(path), cv2.IMREAD_COLOR) if source is None else source
image = cv2.resize(image, read_size) if read_size is not None else image
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if source is None else image
image = augment_fn(image)
return image # (h, w)
def get_resized_wh(w, h, resize, aug_prob):
nh, nw = resize
sh, sw = nh / h, nw / w
# scale = min(sh, sw)
scale = random.choice([sh, sw]) if aug_prob != 1.0 else min(sh, sw)
w_new, h_new = int(round(w*scale)), int(round(h*scale))
return w_new, h_new
def pad_bottom_right(inp, pad_size, ret_mask=False):
mask = None
if inp.ndim == 2:
padded = np.zeros((pad_size[0], pad_size[1]), dtype=inp.dtype)
padded[:inp.shape[0], :inp.shape[1]] = inp
elif inp.ndim == 3:
padded = np.zeros((pad_size[0], pad_size[1], inp.shape[-1]), dtype=inp.dtype)
padded[:inp.shape[0], :inp.shape[1]] = inp
else:
raise NotImplementedError()
if ret_mask:
mask = np.zeros((pad_size[0], pad_size[1]), dtype=bool)
mask[:inp.shape[0], :inp.shape[1]] = True
return padded, mask
def read_images(path, max_resize, df=None, padding=True, augment_fn=None, aug_prob=0.0, flip_prob=1.0,
is_left=None, upper_cornor=None, read_size=None, image=None):
"""
Args:
path: string
max_resize (int): max image size after resied
df (int, optional): image size division factor.
NOTE: this will change the final image size after img_resize
padding (bool): If set to 'True', zero-pad resized images to squared size.
augment_fn (callable, optional): augments images with pre-defined visual effects
aug_prob (float, optional): probability of applying augment_fn
flip_prob (float, optional): probability of flipping images
is_left (bool, optional): if set to 'True', it is left image, otherwise is right image
upper_cornor (tuple, optional): upper left corner of the image
read_size (int, optional): read image size
image (callable, optional): input image
Returns:
image (torch.tensor): (1, h, w)
mask (torch.tensor): (h, w)
scale (torch.tensor): [w/w_new, h/h_new]
"""
# read image
assert max_resize is not None
assert isinstance(max_resize, list)
if len(max_resize) == 1: max_resize = max_resize * 2
w_new, h_new = get_divisible_wh(max_resize[0], max_resize[1], df)
max_resize = [h_new, w_new]
image = imread_color(path, augment_fn, read_size, image) # (h,w,3) image is RGB
# resize image
w, h = image.shape[1], image.shape[0]
if (h > max_resize[0]) or (w > max_resize[1]):
w_new, h_new = get_resized_wh(w, h, max_resize, aug_prob) # make max(w, h) to max_size
else:
w_new, h_new = w, h
# random resize
if random.uniform(0, 1) > aug_prob:
# random rescale
ratio = max(h / max_resize[0], w / max_resize[1])
if type(is_left) == bool:
if is_left:
low, upper = (0.6 / ratio, 1.0 / ratio) if ratio < 1.0 else (0.6, 1.0)
else:
low, upper = (1.0 / ratio, 1.4 / ratio) if ratio < 1.0 else (1.0, 1.4)
else:
low, upper = (0.6 / ratio, 1.4 / ratio) if ratio < 1.0 else (0.6, 1.4)
if not is_left and upper_cornor is not None:
corner = upper_cornor[2:]
upper = min(upper, min(max_resize[0]/corner[1], max_resize[1]/corner[0]))
rands = random.uniform(low, upper)
w_new, h_new = map(lambda x: x*rands, [w_new, h_new])
w_new, h_new = get_divisible_wh(w_new, h_new, df) # make image divided by df and must <= max_size
else:
rands = 1
w_new, h_new = get_divisible_wh(w_new, h_new, df)
# width, height = w_new, h_new
# h_start = w_start = 0
if upper_cornor is not None:
upper_cornor = upper_cornor[:2]
# random crop
if h_new > max_resize[0]:
height = max_resize[0]
h_start = int(random.uniform(0, 1) * (h_new - max_resize[0]))
if upper_cornor is not None:
h_start = min(h_start, math.floor(upper_cornor[1]*(h_new/h)))
else:
height = h_new
h_start = 0
if w_new > max_resize[1]:
width = max_resize[1]
w_start = int(random.uniform(0, 1) * (w_new - max_resize[1]))
if upper_cornor is not None:
w_start = min(w_start, math.floor(upper_cornor[0]*(w_new/w)))
else:
width = w_new
w_start = 0
w_new, h_new = map(int, [w_new, h_new])
width, height = map(int, [width, height])
image = cv2.resize(image, (w_new, h_new)) # (w',h',3)
image = image[h_start:h_start+height, w_start:w_start+width]
scale = [w / w_new, h / h_new]
offset = [w_start, h_start]
# vertical flip
if random.uniform(0, 1) > flip_prob:
hflip = F.hflip_cv2 if image.ndim == 3 and image.shape[2] > 1 and image.dtype == np.uint8 else F.hflip
image = hflip(image)
image = F.vflip(image)
hflip = True
vflip = True
else:
hflip = False
vflip = False
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# padding
mask = None
if padding:
image, _ = pad_bottom_right(image, max_resize, ret_mask=False)
gray, mask = pad_bottom_right(gray, max_resize, ret_mask=True)
mask = torch.from_numpy(mask)
gray = torch.from_numpy(gray).float()[None] / 255 # (1,h,w)
image = torch.from_numpy(image).float() / 255 # (h,w,3)
image = image.permute(2, 0, 1) # (3,h,w)
offset = torch.tensor(offset, dtype=torch.float)
scale = torch.tensor(scale, dtype=torch.float)
resize = [height, width]
return gray, image, scale, rands, offset, hflip, vflip, resize, mask
|