File size: 6,242 Bytes
499e141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import math
import argparse
import pprint
from distutils.util import strtobool
from pathlib import Path
from loguru import logger as loguru_logger

import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.plugins import DDPPlugin, NativeMixedPrecisionPlugin

from src.config.default import get_cfg_defaults
from src.utils.misc import get_rank_zero_only_logger, setup_gpus
from src.utils.profiler import build_profiler
from src.lightning.data import MultiSceneDataModule
from src.lightning.lightning_loftr import PL_LoFTR
import torch

loguru_logger = get_rank_zero_only_logger(loguru_logger)

import os
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:1024"

def parse_args():
    # init a costum parser which will be added into pl.Trainer parser
    # check documentation: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-flags
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        'data_cfg_path', type=str, help='data config path')
    parser.add_argument(
        'main_cfg_path', type=str, help='main config path')
    parser.add_argument(
        '--exp_name', type=str, default='default_exp_name')
    parser.add_argument(
        '--batch_size', type=int, default=4, help='batch_size per gpu')
    parser.add_argument(
        '--num_workers', type=int, default=4)
    parser.add_argument(
        '--pin_memory', type=lambda x: bool(strtobool(x)),
        nargs='?', default=True, help='whether loading data to pinned memory or not')
    parser.add_argument(
        '--ckpt_path', type=str, default=None,
        help='pretrained checkpoint path, helpful for using a pre-trained coarse-only LoFTR')
    parser.add_argument(
        '--disable_ckpt', action='store_true',
        help='disable checkpoint saving (useful for debugging).')
    parser.add_argument(
        '--profiler_name', type=str, default=None,
        help='options: [inference, pytorch], or leave it unset')
    parser.add_argument(
        '--parallel_load_data', action='store_true',
        help='load datasets in with multiple processes.')
    parser.add_argument(
        '--thr', type=float, default=0.1)
    parser.add_argument(
        '--train_coarse_percent', type=float, default=0.1, help='training tricks: save GPU memory')
    parser.add_argument(
        '--disable_mp', action='store_true', help='disable mixed-precision training')
    parser.add_argument(
        '--deter', action='store_true', help='use deterministic mode for training')

    parser = pl.Trainer.add_argparse_args(parser)
    return parser.parse_args()

def inplace_relu(m):
    classname = m.__class__.__name__
    if classname.find('ReLU') != -1:
        m.inplace=True

def main():
    # parse arguments
    args = parse_args()
    rank_zero_only(pprint.pprint)(vars(args))

    # init default-cfg and merge it with the main- and data-cfg
    get_cfg_default = get_cfg_defaults

    config = get_cfg_default()
    config.merge_from_file(args.main_cfg_path)
    config.merge_from_file(args.data_cfg_path)
    
    if config.LOFTR.COARSE.NPE is None:
        config.LOFTR.COARSE.NPE = [832, 832, 832, 832]  # training at 832 resolution on MegaDepth datasets
    
    if args.deter:
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

    pl.seed_everything(config.TRAINER.SEED)  # reproducibility
    # TODO: Use different seeds for each dataloader workers
    # This is needed for data augmentation
    
    # scale lr and warmup-step automatically
    args.gpus = _n_gpus = setup_gpus(args.gpus)
    config.TRAINER.WORLD_SIZE = _n_gpus * args.num_nodes
    config.TRAINER.TRUE_BATCH_SIZE = config.TRAINER.WORLD_SIZE * args.batch_size
    _scaling = config.TRAINER.TRUE_BATCH_SIZE / config.TRAINER.CANONICAL_BS
    config.TRAINER.SCALING = _scaling
    config.TRAINER.TRUE_LR = config.TRAINER.CANONICAL_LR * _scaling
    config.TRAINER.WARMUP_STEP = math.floor(config.TRAINER.WARMUP_STEP / _scaling)

    if args.thr is not None:
        config.LOFTR.MATCH_COARSE.THR = args.thr
    if args.disable_mp:
        config.LOFTR.MP = False

    # lightning module
    profiler = build_profiler(args.profiler_name)
    model = PL_LoFTR(config, pretrained_ckpt=args.ckpt_path, profiler=profiler)
    loguru_logger.info(f"LoFTR LightningModule initialized!")

    # lightning data
    data_module = MultiSceneDataModule(args, config)
    loguru_logger.info(f"LoFTR DataModule initialized!")

    # TensorBoard Logger
    logger = TensorBoardLogger(save_dir='logs/tb_logs', name=args.exp_name, default_hp_metric=False)
    ckpt_dir = Path(logger.log_dir) / 'checkpoints'

    # Callbacks
    # TODO: update ModelCheckpoint to monitor multiple metrics
    ckpt_callback = ModelCheckpoint(monitor='auc@10', verbose=True, save_top_k=5, mode='max',
                                    save_last=True,
                                    dirpath=str(ckpt_dir),
                                    filename='{epoch}-{auc@5:.3f}-{auc@10:.3f}-{auc@20:.3f}')
    lr_monitor = LearningRateMonitor(logging_interval='step')
    callbacks = [lr_monitor]
    if not args.disable_ckpt:
        callbacks.append(ckpt_callback)

    # Lightning Trainer
    trainer = pl.Trainer.from_argparse_args(
        args,
        plugins=[DDPPlugin(find_unused_parameters=False,
                          num_nodes=args.num_nodes,
                          sync_batchnorm=config.TRAINER.WORLD_SIZE > 0), NativeMixedPrecisionPlugin()],
        gradient_clip_val=config.TRAINER.GRADIENT_CLIPPING,
        callbacks=callbacks,
        logger=logger,
        sync_batchnorm=config.TRAINER.WORLD_SIZE > 0,
        replace_sampler_ddp=False,  # use custom sampler
        reload_dataloaders_every_epoch=False,  # avoid repeated samples!
        weights_summary='full',
        profiler=profiler)
    loguru_logger.info(f"Trainer initialized!")
    loguru_logger.info(f"Start training!")

    trainer.fit(model, datamodule=data_module)


if __name__ == '__main__':
    main()