Spaces:
Running
Running
import tensorflow as tf | |
from keras.api.models import Sequential | |
from keras.api.layers import InputLayer, Dense | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
import numpy as np | |
from typing import List | |
from keras.models import Sequential, Model, load_model | |
from keras.layers import Dropout, Flatten, Dense | |
from keras import optimizers | |
from keras.models import model_from_json | |
class InputData(BaseModel): | |
data: List[float] # Lista de caracter铆sticas num茅ricas (flotantes) | |
app = FastAPI() | |
# Funci贸n para construir el modelo manualmente | |
def build_model(): | |
""" | |
with open('model.json','r') as f: | |
json = f.read() | |
model = model_from_json(json) | |
""" | |
model = Sequential( | |
[ | |
InputLayer( | |
shape=(2,), name="dense_2_input" | |
), # Ajusta el tama帽o de entrada seg煤n tu modelo | |
Dense(16, activation="relu", name="dense_2"), | |
Dense(1, activation="sigmoid", name="dense_3"), | |
] | |
) | |
model.load_weights( | |
"model.h5" | |
) # Aseg煤rate de que los nombres de las capas coincidan para que los pesos se carguen correctamente | |
model.compile( | |
loss="mean_squared_error", optimizer="adam", metrics=["binary_accuracy"] | |
) | |
return model | |
model = build_model() # Construir el modelo al iniciar la aplicaci贸n | |
# Ruta de predicci贸n | |
async def predict(data: InputData): | |
print(f"Data: {data}") | |
global model | |
try: | |
# Convertir la lista de entrada a un array de NumPy para la predicci贸n | |
input_data = np.array(data.data).reshape(1, -1) # Asumiendo que la entrada debe ser de forma (1, num_features) | |
#print(input_data) | |
prediction = model.predict(input_data).round() | |
#return {"prediction": prediction.tolist()} | |
#prediction = 9 | |
#print(prediction) | |
return {"prediction": prediction} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |