Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -32,25 +32,32 @@ model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
|
|
32 |
def analyze_voice(audio_file):
|
33 |
"""Analyze voice for health indicators."""
|
34 |
try:
|
|
|
|
|
|
|
35 |
# Load audio file
|
36 |
audio, sr = librosa.load(audio_file, sr=16000)
|
|
|
37 |
|
38 |
# Process audio for Wav2Vec2
|
39 |
inputs = processor(audio, sampling_rate=16000, return_tensors="pt", padding=True)
|
|
|
|
|
40 |
with torch.no_grad():
|
41 |
outputs = model(**inputs)
|
42 |
|
43 |
# Extract features
|
44 |
features = outputs.last_hidden_state.mean(dim=1).numpy()
|
|
|
45 |
|
46 |
-
# Mock health analysis
|
47 |
respiratory_score = np.mean(features)
|
48 |
mental_health_score = np.std(features)
|
49 |
|
50 |
-
#
|
51 |
print(f"Respiratory Score: {respiratory_score:.4f}, Mental Health Score: {mental_health_score:.4f}")
|
52 |
|
53 |
-
#
|
54 |
feedback = ""
|
55 |
if respiratory_score > 0.1:
|
56 |
feedback += f"Possible respiratory issue detected (score: {respiratory_score:.4f}); consult a doctor. "
|
@@ -67,7 +74,7 @@ def analyze_voice(audio_file):
|
|
67 |
if sf:
|
68 |
store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_score)
|
69 |
|
70 |
-
# Clean up temporary audio file
|
71 |
try:
|
72 |
os.remove(audio_file)
|
73 |
print(f"Deleted temporary audio file: {audio_file}")
|
@@ -93,7 +100,7 @@ def store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_s
|
|
93 |
|
94 |
def test_with_sample_audio():
|
95 |
"""Test the app with a sample audio file."""
|
96 |
-
sample_audio_path = "audio_samples/sample.wav"
|
97 |
if os.path.exists(sample_audio_path):
|
98 |
return analyze_voice(sample_audio_path)
|
99 |
return "Sample audio file not found."
|
@@ -108,5 +115,5 @@ iface = gr.Interface(
|
|
108 |
)
|
109 |
|
110 |
if __name__ == "__main__":
|
111 |
-
print(test_with_sample_audio())
|
112 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
32 |
def analyze_voice(audio_file):
|
33 |
"""Analyze voice for health indicators."""
|
34 |
try:
|
35 |
+
# Log audio file info
|
36 |
+
print(f"Processing audio file: {audio_file}")
|
37 |
+
|
38 |
# Load audio file
|
39 |
audio, sr = librosa.load(audio_file, sr=16000)
|
40 |
+
print(f"Audio shape: {audio.shape}, Sampling rate: {sr}, Duration: {len(audio)/sr:.2f}s")
|
41 |
|
42 |
# Process audio for Wav2Vec2
|
43 |
inputs = processor(audio, sampling_rate=16000, return_tensors="pt", padding=True)
|
44 |
+
print(f"Input tensor shape: {inputs['input_values'].shape}")
|
45 |
+
|
46 |
with torch.no_grad():
|
47 |
outputs = model(**inputs)
|
48 |
|
49 |
# Extract features
|
50 |
features = outputs.last_hidden_state.mean(dim=1).numpy()
|
51 |
+
print(f"Features shape: {features.shape}, Sample values: {features[0][:5]}")
|
52 |
|
53 |
+
# Mock health analysis
|
54 |
respiratory_score = np.mean(features)
|
55 |
mental_health_score = np.std(features)
|
56 |
|
57 |
+
# Log scores
|
58 |
print(f"Respiratory Score: {respiratory_score:.4f}, Mental Health Score: {mental_health_score:.4f}")
|
59 |
|
60 |
+
# Threshold-based feedback
|
61 |
feedback = ""
|
62 |
if respiratory_score > 0.1:
|
63 |
feedback += f"Possible respiratory issue detected (score: {respiratory_score:.4f}); consult a doctor. "
|
|
|
74 |
if sf:
|
75 |
store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_score)
|
76 |
|
77 |
+
# Clean up temporary audio file
|
78 |
try:
|
79 |
os.remove(audio_file)
|
80 |
print(f"Deleted temporary audio file: {audio_file}")
|
|
|
100 |
|
101 |
def test_with_sample_audio():
|
102 |
"""Test the app with a sample audio file."""
|
103 |
+
sample_audio_path = "audio_samples/sample.wav"
|
104 |
if os.path.exists(sample_audio_path):
|
105 |
return analyze_voice(sample_audio_path)
|
106 |
return "Sample audio file not found."
|
|
|
115 |
)
|
116 |
|
117 |
if __name__ == "__main__":
|
118 |
+
print(test_with_sample_audio())
|
119 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|