RathodHarish's picture
Update app.py
98eae58 verified
import gradio as gr
import librosa
import numpy as np
import os
import hashlib
from datetime import datetime
import soundfile as sf
import torch
from tenacity import retry, stop_after_attempt, wait_fixed
from transformers import pipeline
# Initialize local models with retry logic
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def load_whisper_model():
try:
model = pipeline(
"automatic-speech-recognition",
model="openai/whisper-tiny", # Multilingual model
device=-1, # CPU; use device=0 for GPU if available
model_kwargs={"use_safetensors": True}
)
print("Whisper model loaded successfully.")
return model
except Exception as e:
print(f"Failed to load Whisper model: {str(e)}")
raise
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def load_symptom_model():
try:
model = pipeline(
"text-classification",
model="abhirajeshbhai/symptom-2-disease-net",
device=-1, # CPU
model_kwargs={"use_safetensors": True}
)
print("Symptom-2-Disease model loaded successfully.")
return model
except Exception as e:
print(f"Failed to load Symptom-2-Disease model: {str(e)}")
# Fallback to a generic model
try:
model = pipeline(
"text-classification",
model="distilbert-base-uncased",
device=-1
)
print("Fallback to distilbert-base-uncased model.")
return model
except Exception as fallback_e:
print(f"Fallback model failed: {str(fallback_e)}")
raise
whisper = None
symptom_classifier = None
is_fallback_model = False
try:
whisper = load_whisper_model()
except Exception as e:
print(f"Whisper model initialization failed after retries: {str(e)}")
try:
symptom_classifier = load_symptom_model()
except Exception as e:
print(f"Symptom model initialization failed after retries: {str(e)}")
symptom_classifier = None
is_fallback_model = True
def compute_file_hash(file_path):
"""Compute MD5 hash of a file to check uniqueness."""
hash_md5 = hashlib.md5()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def transcribe_audio(audio_file, language="en"):
"""Transcribe audio using local Whisper model."""
if not whisper:
return "Error: Whisper model not loaded. Check logs for details or ensure sufficient compute resources."
try:
# Load and validate audio
audio, sr = librosa.load(audio_file, sr=16000)
if len(audio) < 1600: # Less than 0.1s
return "Error: Audio too short. Please provide audio of at least 1 second."
if np.max(np.abs(audio)) < 1e-4: # Too quiet
return "Error: Audio too quiet. Please provide clear audio describing symptoms."
# Save as WAV for Whisper
temp_wav = f"/tmp/{os.path.basename(audio_file)}.wav"
sf.write(temp_wav, audio, sr)
# Transcribe with beam search and language
with torch.no_grad():
result = whisper(temp_wav, generate_kwargs={"num_beams": 5, "language": language})
transcription = result.get("text", "").strip()
print(f"Transcription: {transcription}")
# Clean up temp file
try:
os.remove(temp_wav)
except Exception:
pass
if not transcription:
return "Transcription empty. Please provide clear audio describing symptoms."
# Check for repetitive transcription
words = transcription.split()
if len(words) > 5 and len(set(words)) < len(words) / 2:
return "Error: Transcription appears repetitive. Please provide clear, non-repetitive audio describing symptoms."
return transcription
except Exception as e:
return f"Error transcribing audio: {str(e)}"
def analyze_symptoms(text):
"""Analyze symptoms using local Symptom-2-Disease model."""
if not symptom_classifier:
return "Error: Symptom-2-Disease model not loaded. Check logs for details or ensure sufficient compute resources.", 0.0
try:
if not text or "Error transcribing" in text:
return "No valid transcription for analysis.", 0.0
with torch.no_grad():
result = symptom_classifier(text)
if result and isinstance(result, list) and len(result) > 0:
prediction = result[0]["label"]
score = result[0]["score"]
if is_fallback_model:
print("Warning: Using fallback model (distilbert-base-uncased). Results may be less accurate.")
prediction = f"{prediction} (using fallback model)"
print(f"Health Prediction: {prediction}, Score: {score:.4f}")
return prediction, score
return "No health condition predicted", 0.0
except Exception as e:
return f"Error analyzing symptoms: {str(e)}", 0.0
def handle_health_query(query, language="en"):
"""Handle health-related queries with a general response."""
if not query:
return "Please provide a valid health query."
# Placeholder for Q&A logic (could integrate a model like BERT for Q&A)
restricted_terms = ["medicine", "treatment", "drug", "prescription"]
if any(term in query.lower() for term in restricted_terms):
return "This tool does not provide medication or treatment advice. Please ask about symptoms or general health information (e.g., 'What are symptoms of asthma?')."
return f"Response to query '{query}': For accurate health information, consult a healthcare provider."
def analyze_voice(audio_file, language="en"):
"""Analyze voice for health indicators and handle queries."""
try:
# Ensure unique file name
unique_path = f"/tmp/gradio/{datetime.now().strftime('%Y%m%d%H%M%S%f')}_{os.path.basename(audio_file)}"
os.rename(audio_file, unique_path)
audio_file = unique_path
# Log audio file info
file_hash = compute_file_hash(audio_file)
print(f"Processing audio file: {audio_file}, Hash: {file_hash}")
# Load audio to verify format
audio, sr = librosa.load(audio_file, sr=16000)
print(f"Audio shape: {audio.shape}, Sampling rate: {sr}, Duration: {len(audio)/sr:.2f}s, Mean: {np.mean(audio):.4f}, Std: {np.std(audio):.4f}")
# Transcribe audio
transcription = transcribe_audio(audio_file, language)
if "Error transcribing" in transcription:
return transcription
# Split transcription into symptom and query parts
symptom_text = transcription
query_text = None
restricted_terms = ["medicine", "treatment", "drug", "prescription"]
for term in restricted_terms:
if term in transcription.lower():
# Split at the first restricted term
split_index = transcription.lower().find(term)
symptom_text = transcription[:split_index].strip()
query_text = transcription[split_index:].strip()
break
feedback = ""
# Analyze symptoms if present
if symptom_text:
prediction, score = analyze_symptoms(symptom_text)
if "Error analyzing" in prediction:
feedback += prediction + "\n"
elif prediction == "No health condition predicted":
feedback += "No significant health indicators detected.\n"
else:
feedback += f"Possible health condition: {prediction} (confidence: {score:.4f}). Consult a doctor.\n"
else:
feedback += "No symptoms detected in the audio.\n"
# Handle query if present
if query_text:
feedback += f"\nQuery detected: '{query_text}'\n"
feedback += handle_health_query(query_text, language) + "\n"
# Add debug info and disclaimer
feedback += f"\n**Debug Info**: Transcription = '{transcription}', File Hash = {file_hash}"
feedback += "\n**Disclaimer**: This is not a diagnostic tool. Consult a healthcare provider for medical advice."
# Clean up temporary audio file
try:
os.remove(audio_file)
print(f"Deleted temporary audio file: {audio_file}")
except Exception as e:
print(f"Failed to delete audio file: {str(e)}")
return feedback
except Exception as e:
return f"Error processing audio: {str(e)}"
# Gradio interface
def create_gradio_interface():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# Health Voice Analyzer
Record or upload a voice sample describing symptoms in English, Spanish, Hindi, or Mandarin (e.g., 'I have a fever').
Ask health questions in the text box below (e.g., 'What are symptoms of asthma?').
**Note**: Do not ask for medication or treatment advice; focus on symptoms or general health questions.
**Disclaimer**: This is not a diagnostic tool. Consult a healthcare provider for medical advice.
**Text-to-Speech**: Available in the web frontend (Salesforce Sites) using the browser's Web Speech API.
"""
)
with gr.Row():
language = gr.Dropdown(
choices=["en", "es", "hi", "zh"],
label="Select Language",
value="en"
)
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Record or Upload Voice")
with gr.Row():
query_input = gr.Textbox(label="Ask a Health Question (e.g., 'What are symptoms of asthma?')")
with gr.Row():
output = gr.Textbox(label="Health Assessment Feedback")
with gr.Row():
analyze_button = gr.Button("Analyze Voice")
query_button = gr.Button("Submit Query")
analyze_button.click(
fn=analyze_voice,
inputs=[audio_input, language],
outputs=output
)
query_button.click(
fn=handle_health_query,
inputs=[query_input, language],
outputs=output
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(server_name="0.0.0.0", server_port=7860)