File size: 4,537 Bytes
410fd66
 
 
 
 
68390a5
410fd66
 
 
68390a5
a937006
 
 
 
68390a5
 
 
 
 
 
 
 
 
 
 
 
410fd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b86bc45
410fd66
 
b86bc45
 
 
 
 
 
 
 
410fd66
b86bc45
 
 
 
410fd66
 
 
 
b86bc45
 
410fd66
 
68390a5
 
410fd66
b86bc45
 
 
 
 
 
 
410fd66
 
 
 
 
 
68390a5
 
 
 
 
 
 
 
 
 
410fd66
a937006
 
b86bc45
a937006
 
 
 
410fd66
 
 
 
 
 
 
 
 
 
a937006
410fd66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import gradio as gr
import librosa
import numpy as np
import torch
from transformers import Wav2Vec2Processor, Wav2Vec2Model
from simple_salesforce import Salesforce
import os
from datetime import datetime

# Salesforce credentials (store securely in environment variables)
SF_USERNAME = os.getenv("SF_USERNAME", "your_salesforce_username")
SF_PASSWORD = os.getenv("SF_PASSWORD", "your_salesforce_password")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN", "your_salesforce_security_token")
SF_INSTANCE_URL = os.getenv("SF_INSTANCE_URL", "https://your-salesforce-instance.salesforce.com")

# Initialize Salesforce connection
try:
    sf = Salesforce(
        username=SF_USERNAME,
        password=SF_PASSWORD,
        security_token=SF_SECURITY_TOKEN,
        instance_url=SF_INSTANCE_URL
    )
except Exception as e:
    print(f"Failed to connect to Salesforce: {str(e)}")
    sf = None

# Load Wav2Vec2 model for speech feature extraction
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")

def analyze_voice(audio_file):
    """Analyze voice for health indicators."""
    try:
        # Load audio file
        audio, sr = librosa.load(audio_file, sr=16000)
        
        # Process audio for Wav2Vec2
        inputs = processor(audio, sampling_rate=16000, return_tensors="pt", padding=True)
        with torch.no_grad():
            outputs = model(**inputs)
        
        # Extract features
        features = outputs.last_hidden_state.mean(dim=1).numpy()
        
        # Mock health analysis (for testing)
        respiratory_score = np.mean(features)
        mental_health_score = np.std(features)
        
        # Debug: Print scores
        print(f"Respiratory Score: {respiratory_score:.4f}, Mental Health Score: {mental_health_score:.4f}")
        
        # Adjusted thresholds for testing
        feedback = ""
        if respiratory_score > 0.1:
            feedback += f"Possible respiratory issue detected (score: {respiratory_score:.4f}); consult a doctor. "
        if mental_health_score > 0.1:
            feedback += f"Possible stress indicators detected (score: {mental_health_score:.4f}); consider professional advice. "
        
        if not feedback:
            feedback = "No significant health indicators detected."
        
        feedback += f"\n\n**Debug Info**: Respiratory Score = {respiratory_score:.4f}, Mental Health Score = {mental_health_score:.4f}"
        feedback += "\n**Disclaimer**: This is not a diagnostic tool. Consult a healthcare provider for medical advice."
        
        # Store in Salesforce
        if sf:
            store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_score)
        
        # Clean up temporary audio file (for HIPAA/GDPR compliance)
        try:
            os.remove(audio_file)
            print(f"Deleted temporary audio file: {audio_file}")
        except Exception as e:
            print(f"Failed to delete audio file: {str(e)}")
        
        return feedback
    except Exception as e:
        return f"Error processing audio: {str(e)}"

def store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_score):
    """Store analysis results in Salesforce."""
    try:
        sf.HealthAssessment__c.create({
            "AssessmentDate__c": datetime.utcnow().isoformat(),
            "Feedback__c": feedback,
            "RespiratoryScore__c": float(respiratory_score),
            "MentalHealthScore__c": float(mental_health_score),
            "AudioFileName__c": os.path.basename(audio_file)
        })
    except Exception as e:
        print(f"Failed to store in Salesforce: {str(e)}")

def test_with_sample_audio():
    """Test the app with a sample audio file."""
    sample_audio_path = "audio_samples/sample.wav"  # Adjust if using common_voice_sample.wav
    if os.path.exists(sample_audio_path):
        return analyze_voice(sample_audio_path)
    return "Sample audio file not found."

# Gradio interface
iface = gr.Interface(
    fn=analyze_voice,
    inputs=gr.Audio(type="filepath", label="Record or Upload Voice"),
    outputs=gr.Textbox(label="Health Assessment Feedback"),
    title="Health Voice Analyzer",
    description="Record or upload a voice sample for preliminary health assessment. Supports English, Spanish, Hindi, Mandarin."
)

if __name__ == "__main__":
    print(test_with_sample_audio())  # Run test on startup
    iface.launch(server_name="0.0.0.0", server_port=7860)