File size: 6,086 Bytes
410fd66
a6dea81
410fd66
 
 
a6dea81
410fd66
a6dea81
410fd66
68390a5
a937006
 
 
 
68390a5
a6dea81
 
 
68390a5
 
 
 
 
 
 
 
 
 
 
410fd66
a6dea81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410fd66
 
 
 
a6dea81
 
 
410fd66
a6dea81
 
 
410fd66
a6dea81
 
 
 
410fd66
a6dea81
 
 
 
410fd66
a6dea81
 
410fd66
a6dea81
 
410fd66
a6dea81
 
410fd66
 
68390a5
a6dea81
 
 
 
 
 
 
 
410fd66
 
 
 
 
a6dea81
410fd66
68390a5
 
 
 
a6dea81
 
 
68390a5
 
 
 
410fd66
a937006
 
a6dea81
a937006
 
 
 
410fd66
 
 
 
 
 
a6dea81
410fd66
 
 
a6dea81
410fd66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr
import requests
import librosa
import numpy as np
import os
import hashlib
from datetime import datetime
from simple_salesforce import Salesforce

# Salesforce credentials (store securely in environment variables)
SF_USERNAME = os.getenv("SF_USERNAME", "your_salesforce_username")
SF_PASSWORD = os.getenv("SF_PASSWORD", "your_salesforce_password")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN", "your_salesforce_security_token")
SF_INSTANCE_URL = os.getenv("SF_INSTANCE_URL", "https://your-salesforce-instance.salesforce.com")

# Hugging Face Inference API token (store in environment variables)
HF_TOKEN = os.getenv("HF_TOKEN", "your_huggingface_token")

# Initialize Salesforce connection
try:
    sf = Salesforce(
        username=SF_USERNAME,
        password=SF_PASSWORD,
        security_token=SF_SECURITY_TOKEN,
        instance_url=SF_INSTANCE_URL
    )
except Exception as e:
    print(f"Failed to connect to Salesforce: {str(e)}")
    sf = None

# Hugging Face API endpoints
WHISPER_API_URL = "https://api-inference.huggingface.co/models/openai/whisper-tiny.en"
SYMPTOM_API_URL = "https://api-inference.huggingface.co/models/abhirajeshbhai/symptom-2-disease-net"
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}

def compute_file_hash(file_path):
    """Compute MD5 hash of a file to check uniqueness."""
    hash_md5 = hashlib.md5()
    with open(file_path, "rb") as f:
        for chunk in iter(lambda: f.read(4096), b""):
            hash_md5.update(chunk)
    return hash_md5.hexdigest()

def transcribe_audio(audio_file):
    """Transcribe audio using Whisper API."""
    try:
        with open(audio_file, "rb") as f:
            data = f.read()
        response = requests.post(WHISPER_API_URL, headers=HEADERS, data=data)
        response.raise_for_status()
        result = response.json()
        transcription = result.get("text", "")
        print(f"Transcription: {transcription}")
        return transcription
    except Exception as e:
        print(f"Whisper API error: {str(e)}")
        return f"Error transcribing audio: {str(e)}"

def analyze_symptoms(text):
    """Analyze symptoms using Symptom-2-Disease API."""
    try:
        payload = {"inputs": text}
        response = requests.post(SYMPTOM_API_URL, headers=HEADERS, json=payload)
        response.raise_for_status()
        result = response.json()
        if result and isinstance(result, list) and len(result) > 0:
            prediction = result[0][0]["label"]
            score = result[0][0]["score"]
            print(f"Health Prediction: {prediction}, Score: {score:.4f}")
            return prediction, score
        return "No health condition predicted", 0.0
    except Exception as e:
        print(f"Symptom API error: {str(e)}")
        return f"Error analyzing symptoms: {str(e)}", 0.0

def analyze_voice(audio_file):
    """Analyze voice for health indicators."""
    try:
        # Log audio file info
        file_hash = compute_file_hash(audio_file)
        print(f"Processing audio file: {audio_file}, Hash: {file_hash}")
        
        # Load audio to verify format
        audio, sr = librosa.load(audio_file, sr=16000)
        print(f"Audio shape: {audio.shape}, Sampling rate: {sr}, Duration: {len(audio)/sr:.2f}s, Mean: {np.mean(audio):.4f}, Std: {np.std(audio):.4f}")
        
        # Transcribe audio
        transcription = transcribe_audio(audio_file)
        if "Error transcribing" in transcription:
            return transcription
        
        # Analyze symptoms
        prediction, score = analyze_symptoms(transcription)
        if "Error analyzing" in prediction:
            return prediction
        
        # Generate feedback
        if prediction == "No health condition predicted":
            feedback = "No significant health indicators detected."
        else:
            feedback = f"Possible health condition: {prediction} (confidence: {score:.4f}). Consult a doctor."
        
        feedback += f"\n\n**Debug Info**: Transcription = '{transcription}', Prediction = {prediction}, Confidence = {score:.4f}, File Hash = {file_hash}"
        feedback += "\n**Disclaimer**: This is not a diagnostic tool. Consult a healthcare provider for medical advice."
        
        # Store in Salesforce
        if sf:
            store_in_salesforce(audio_file, feedback, transcription, prediction, score)
        
        # Clean up temporary audio file
        try:
            os.remove(audio_file)
            print(f"Deleted temporary audio file: {audio_file}")
        except Exception as e:
            print(f"Failed to delete audio file: {str(e)}")
        
        return feedback
    except Exception as e:
        return f"Error processing audio: {str(e)}"

def store_in_salesforce(audio_file, feedback, transcription, prediction, score):
    """Store analysis results in Salesforce."""
    try:
        sf.HealthAssessment__c.create({
            "AssessmentDate__c": datetime.utcnow().isoformat(),
            "Feedback__c": feedback,
            "Transcription__c": transcription,
            "Prediction__c": prediction,
            "Confidence__c": float(score),
            "AudioFileName__c": os.path.basename(audio_file)
        })
    except Exception as e:
        print(f"Failed to store in Salesforce: {str(e)}")

def test_with_sample_audio():
    """Test the app with a sample audio file."""
    sample_audio_path = "audio_samples/sample.wav"
    if os.path.exists(sample_audio_path):
        return analyze_voice(sample_audio_path)
    return "Sample audio file not found."

# Gradio interface
iface = gr.Interface(
    fn=analyze_voice,
    inputs=gr.Audio(type="filepath", label="Record or Upload Voice"),
    outputs=gr.Textbox(label="Health Assessment Feedback"),
    title="Health Voice Analyzer",
    description="Record or upload a voice sample describing symptoms for preliminary health assessment. Supports English (transcription), with symptom analysis in English."
)

if __name__ == "__main__":
    print(test_with_sample_audio())
    iface.launch(server_name="0.0.0.0", server_port=7860)