import streamlit as st import tensorflow as tf from transformers import pipeline from textblob import TextBlob classifier = pipeline(task="sentiment-analysis") textIn = st.text_input("Input Text Here:", "I really like the color of your car!") option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'TextBlob')) st.write('You selected:', option) if option == 'Pipeline': # pipeline preds = classifier(textIn) preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] st.write('According to Pipeline, input text is ', preds[0]['label'], ' with a confidence of ', preds[0]['score']) if option == 'TextBlob': # textblob polarity = TextBlob(textIn).sentiment.polarity subjectivity = TextBlob(textIn).sentiment.subjectivity sentiment = '' if polarity < 0: sentiment = 'Negative' elif polarity == 0: sentiment = 'Neutral' else: sentiment = 'Positive' st.write('According to TextBlob, input text is ', sentiment, ' and a subjectivity score (from 0 being objective to 1 being subjective) of ', subjectivity)