import streamlit as st import tensorflow as tf import pandas as pd from transformers import pipeline from textblob import TextBlob classifier = pipeline(task="sentiment-analysis") textIn = st.text_input("Input Text Here:", "I really like the color of your car!") option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'textblob', '')) st.write('You selected:', option) # pipeline preds = classifier(textIn) preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] st.write('According to Pipeline, input text is ', preds[0]['label'], ' with a confidence of ', preds[0]['score']) # textblob def textblob_polarity(text): return TextBlob(text).sentiment.polarity def getAnalysis(score): if score < 0: return 'Negative' elif score == 0: return 'Neutral' else: return 'Positive' df['polarity'] = df[text].apply(textblob_polarity) df['classification'] = df['polarity'].apply(getAnalysis) st.write('According to textblob, input text is ', df['classification'], ' with a subjectivity score of ', df['polarity'])