Spaces:
Runtime error
Runtime error
Jeffrey Rathgeber Jr
commited on
load all models
Browse files
app.py
CHANGED
|
@@ -16,43 +16,46 @@ option = st.selectbox('Which pre-trained model would you like for your sentiment
|
|
| 16 |
st.write('You selected:', option)
|
| 17 |
|
| 18 |
if option == 'MILESTONE 3':
|
| 19 |
-
|
| 20 |
st.write('test1')
|
| 21 |
-
|
| 22 |
-
model_name_0 = "Rathgeberj/milestone3_1"
|
| 23 |
# model_0 = AutoModelForSequenceClassification.from_pretrained(model_name_0)
|
| 24 |
-
model_0 = BertForMaskedLM.from_pretrained(
|
| 25 |
tokenizer_0 = AutoTokenizer.from_pretrained(model_name_0)
|
| 26 |
classifier_0 = pipeline(task="sentiment-analysis", model=model_0, tokenizer=tokenizer_0)
|
| 27 |
|
| 28 |
-
|
| 29 |
# model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1)
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
# model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2)
|
| 35 |
-
|
| 36 |
-
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
# model_3 = AutoModelForSequenceClassification.from_pretrained(model_name_3)
|
| 40 |
-
|
| 41 |
-
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
# model_4 = AutoModelForSequenceClassification.from_pretrained(model_name_4)
|
| 45 |
-
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
# model_5 = AutoModelForSequenceClassification.from_pretrained(model_name_5)
|
| 50 |
-
|
| 51 |
-
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
# X_train = [textIn]
|
| 58 |
# batch = tokenizer(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
|
|
|
|
| 16 |
st.write('You selected:', option)
|
| 17 |
|
| 18 |
if option == 'MILESTONE 3':
|
|
|
|
| 19 |
st.write('test1')
|
| 20 |
+
model_name_0 = "Rathgeberj/milestone3_0"
|
|
|
|
| 21 |
# model_0 = AutoModelForSequenceClassification.from_pretrained(model_name_0)
|
| 22 |
+
model_0 = BertForMaskedLM.from_pretrained(model_name_0)
|
| 23 |
tokenizer_0 = AutoTokenizer.from_pretrained(model_name_0)
|
| 24 |
classifier_0 = pipeline(task="sentiment-analysis", model=model_0, tokenizer=tokenizer_0)
|
| 25 |
|
| 26 |
+
model_name_1 = "Rathgeberj/milestone3_1"
|
| 27 |
# model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1)
|
| 28 |
+
model_1 = BertForMaskedLM.from_pretrained(model_name_1)
|
| 29 |
+
tokenizer_1 = AutoTokenizer.from_pretrained(model_name_1)
|
| 30 |
+
classifier_1 = pipeline(task="sentiment-analysis", model=model_1, tokenizer=tokenizer_1)
|
| 31 |
|
| 32 |
+
model_name_2 = "Rathgeberj/milestone3_2"
|
| 33 |
# model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2)
|
| 34 |
+
model_2 = BertForMaskedLM.from_pretrained(model_name_2)
|
| 35 |
+
tokenizer_2 = AutoTokenizer.from_pretrained(model_name_2)
|
| 36 |
+
classifier_2 = pipeline(task="sentiment-analysis", model=model_2, tokenizer=tokenizer_2)
|
| 37 |
|
| 38 |
+
model_name_3 = "Rathgeberj/milestone3_3"
|
| 39 |
# model_3 = AutoModelForSequenceClassification.from_pretrained(model_name_3)
|
| 40 |
+
model_3 = BertForMaskedLM.from_pretrained(model_name_3)
|
| 41 |
+
tokenizer_3 = AutoTokenizer.from_pretrained(model_name_3)
|
| 42 |
+
classifier_3 = pipeline(task="sentiment-analysis", model=model_3, tokenizer=tokenizer_3)
|
| 43 |
|
| 44 |
+
model_name_4 = "Rathgeberj/milestone3_4"
|
| 45 |
# model_4 = AutoModelForSequenceClassification.from_pretrained(model_name_4)
|
| 46 |
+
model_4 = BertForMaskedLM.from_pretrained(model_name_4)
|
| 47 |
+
tokenizer_4 = AutoTokenizer.from_pretrained(model_name_4)
|
| 48 |
+
classifier_4 = pipeline(task="sentiment-analysis", model=model_4, tokenizer=tokenizer_4)
|
| 49 |
|
| 50 |
+
model_name_5 = "Rathgeberj/milestone3_5"
|
| 51 |
# model_5 = AutoModelForSequenceClassification.from_pretrained(model_name_5)
|
| 52 |
+
model_5 = BertForMaskedLM.from_pretrained(model_name_5)
|
| 53 |
+
tokenizer_5 = AutoTokenizer.from_pretrained(model_name_5)
|
| 54 |
+
classifier_5 = pipeline(task="sentiment-analysis", model=model_5, tokenizer=tokenizer_5)
|
| 55 |
|
| 56 |
+
models = [model_0, model_1, model_2, model_3, model_4, model_5]
|
| 57 |
+
tokenizers = [tokenizer_0, tokenizer_1, tokenizer_2, tokenizer_3, tokenizer_4, tokenizer_5]
|
| 58 |
+
classifiers = [classifier_0, classifier_1, classifier_2, classifier_3, classifier_4, classifier_5]
|
| 59 |
|
| 60 |
# X_train = [textIn]
|
| 61 |
# batch = tokenizer(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
|