Spaces:
Runtime error
Runtime error
Jeffrey Rathgeber Jr
commited on
test 3rd option
Browse files
app.py
CHANGED
@@ -12,19 +12,40 @@ model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
|
14 |
classifier = pipeline(task="sentiment-analysis", model=model, tokenizer=tokenizer)
|
15 |
-
# classifier = pipeline(task="sentiment-analysis")
|
16 |
|
17 |
textIn = st.text_input("Input Text Here:", "I really like the color of your car!")
|
18 |
|
19 |
-
option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'TextBlob'))
|
20 |
|
21 |
st.write('You selected:', option)
|
22 |
|
23 |
|
24 |
-
|
25 |
-
token_ids = tokenizer.convert_tokens_to_ids(tokens)
|
26 |
-
input_ids = tokenizer(textIn)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
if option == 'Pipeline':
|
30 |
# pipeline
|
@@ -45,3 +66,7 @@ if option == 'TextBlob':
|
|
45 |
sentiment = 'Positive'
|
46 |
|
47 |
st.write('According to TextBlob, input text is ', sentiment, ' and a subjectivity score (from 0 being objective to 1 being subjective) of ', subjectivity)
|
|
|
|
|
|
|
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
|
14 |
classifier = pipeline(task="sentiment-analysis", model=model, tokenizer=tokenizer)
|
|
|
15 |
|
16 |
textIn = st.text_input("Input Text Here:", "I really like the color of your car!")
|
17 |
|
18 |
+
option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'TextBlob', 'FINE-TUNED'))
|
19 |
|
20 |
st.write('You selected:', option)
|
21 |
|
22 |
|
23 |
+
#------------------------------------------------------------------------
|
|
|
|
|
24 |
|
25 |
+
# tokens = tokenizer.tokenize(textIn)
|
26 |
+
# token_ids = tokenizer.convert_tokens_to_ids(tokens)
|
27 |
+
# input_ids = tokenizer(textIn)
|
28 |
+
|
29 |
+
|
30 |
+
# X_train = [textIn]
|
31 |
+
|
32 |
+
# batch = tokenizer(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
|
33 |
+
# # batch = torch.tensor(batchbatch["input_ids"])
|
34 |
+
|
35 |
+
# with torch.no_grad():
|
36 |
+
# outputs = model(**batch, labels=torch.tensor([1, 0]))
|
37 |
+
# predictions = F.softmax(outputs.logits, dim=1)
|
38 |
+
# labels = torch.argmax(predictions, dim=1)
|
39 |
+
# labels = [model.config.id2label[label_id] for label_id in labels.tolist()]
|
40 |
+
|
41 |
+
# # save_directory = "saved"
|
42 |
+
# tokenizer.save_pretrained(save_directory)
|
43 |
+
# model.save_pretrained(save_directory)
|
44 |
+
|
45 |
+
# tokenizer = AutoTokenizer.from_pretrained(save_directory)
|
46 |
+
# model = AutoModelForSequenceClassification.from_pretrained(save_directory)
|
47 |
+
|
48 |
+
#------------------------------------------------------------------------
|
49 |
|
50 |
if option == 'Pipeline':
|
51 |
# pipeline
|
|
|
66 |
sentiment = 'Positive'
|
67 |
|
68 |
st.write('According to TextBlob, input text is ', sentiment, ' and a subjectivity score (from 0 being objective to 1 being subjective) of ', subjectivity)
|
69 |
+
|
70 |
+
|
71 |
+
if option == 'FINE-TUNED':
|
72 |
+
...
|