Spaces:
Runtime error
Runtime error
Jeffrey Rathgeber Jr
commited on
settingupthird
Browse files
app.py
CHANGED
@@ -6,13 +6,6 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
6 |
import torch
|
7 |
import torch.nn.functional as F
|
8 |
|
9 |
-
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
10 |
-
|
11 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
-
|
14 |
-
classifier = pipeline(task="sentiment-analysis", model=model, tokenizer=tokenizer)
|
15 |
-
|
16 |
textIn = st.text_input("Input Text Here:", "I really like the color of your car!")
|
17 |
|
18 |
option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'TextBlob', 'MILESTONE 3: FINE-TUNED'))
|
@@ -48,6 +41,12 @@ st.write('You selected:', option)
|
|
48 |
#------------------------------------------------------------------------
|
49 |
|
50 |
if option == 'Pipeline':
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# pipeline
|
52 |
preds = classifier(textIn)
|
53 |
preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
|
@@ -69,4 +68,11 @@ if option == 'TextBlob':
|
|
69 |
|
70 |
|
71 |
if option == 'MILESTONE 3: FINE-TUNED':
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import torch
|
7 |
import torch.nn.functional as F
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
textIn = st.text_input("Input Text Here:", "I really like the color of your car!")
|
10 |
|
11 |
option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'TextBlob', 'MILESTONE 3: FINE-TUNED'))
|
|
|
41 |
#------------------------------------------------------------------------
|
42 |
|
43 |
if option == 'Pipeline':
|
44 |
+
|
45 |
+
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
46 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
+
classifier = pipeline(task="sentiment-analysis", model=model, tokenizer=tokenizer)
|
49 |
+
|
50 |
# pipeline
|
51 |
preds = classifier(textIn)
|
52 |
preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
|
|
|
68 |
|
69 |
|
70 |
if option == 'MILESTONE 3: FINE-TUNED':
|
71 |
+
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
72 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
74 |
+
classifier = pipeline(task="sentiment-analysis", model=model, tokenizer=tokenizer)
|
75 |
+
# pipeline
|
76 |
+
preds = classifier(textIn)
|
77 |
+
preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
|
78 |
+
st.write('According to Pipeline, input text is ', preds[0]['label'], ' with a confidence of ', preds[0]['score'])
|