Jeffrey Rathgeber Jr commited on
Commit
94e57de
·
unverified ·
1 Parent(s): 26f67cd

Add files via upload

Browse files
Files changed (1) hide show
  1. aiprojecttest.py +215 -0
aiprojecttest.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """AiProjectTest.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1E4AHYbuRi_FbOMhQntdAMMZMY14hWh2e
8
+ """
9
+
10
+ from pathlib import Path
11
+ from sklearn.model_selection import train_test_split
12
+ import torch
13
+ from torch.utils.data import Dataset
14
+ from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
15
+ from transformers import Trainer, TrainingArguments
16
+ from torch.utils.data import DataLoader
17
+ from transformers import AdamW
18
+ import pandas as pd
19
+
20
+ df_train = pd.read_csv('train.csv')
21
+ df_test = pd.read_csv('test.csv')
22
+ df_test_labels = pd.read_csv('test_labels.csv')
23
+
24
+ model_name = "distilbert-base-uncased"
25
+
26
+ def read_file(f):
27
+ texts = f['comment_text'].tolist()
28
+ labels = []
29
+ for i in range(len(f)):
30
+ temp = []
31
+ temp.append(f['toxic'][i])
32
+ temp.append(f['severe_toxic'][i])
33
+ temp.append(f['obscene'][i])
34
+ temp.append(f['threat'][i])
35
+ temp.append(f['insult'][i])
36
+ temp.append(f['identity_hate'][i])
37
+ labels.append(temp)
38
+ return texts, labels
39
+
40
+ train_texts, train_labels = read_file(df_train)
41
+ test_texts = df_test['comment_text'].tolist()
42
+ test_labels = []
43
+ for i in range(len(df_test_labels)):
44
+ temp = []
45
+ temp.append(df_test_labels['toxic'][i])
46
+ temp.append(df_test_labels['severe_toxic'][i])
47
+ temp.append(df_test_labels['obscene'][i])
48
+ temp.append(df_test_labels['threat'][i])
49
+ temp.append(df_test_labels['insult'][i])
50
+ temp.append(df_test_labels['identity_hate'][i])
51
+ test_labels.append(temp)
52
+
53
+ train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2)
54
+
55
+ tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
56
+
57
+ ind = 0
58
+ train_encodings = {'input_ids': [], 'attention_mask': []}
59
+
60
+ for i in range(len(train_texts)//16):
61
+ temp = tokenizer(train_texts[ind:ind+16], truncation=True, padding=True)
62
+ train_encodings['input_ids'] += temp['input_ids']
63
+ train_encodings['attention_mask'] += temp['attention_mask']
64
+ ind += 16
65
+
66
+ ind = 0
67
+ val_encodings = {'input_ids': [], 'attention_mask': []}
68
+
69
+ for i in range(len(val_texts)//16):
70
+ temp = tokenizer(val_texts[ind:ind+16], truncation=True, padding=True)
71
+ val_encodings['input_ids'] += temp['input_ids']
72
+ val_encodings['attention_mask'] += temp['attention_mask']
73
+ ind += 16
74
+
75
+ ind = 0
76
+ test_encodings = {'input_ids': [], 'attention_mask': []}
77
+
78
+ for i in range(len(test_texts)//16):
79
+ temp = tokenizer(test_texts[ind:ind+16], truncation=True, padding=True)
80
+ test_encodings['input_ids'] += temp['input_ids']
81
+ test_encodings['attention_mask'] += temp['attention_mask']
82
+ ind += 16
83
+
84
+ while True:
85
+ if len(train_labels) > len(train_encodings):
86
+ train_labels.pop()
87
+ else:
88
+ break
89
+
90
+ while True:
91
+ if len(val_labels) > len(val_encodings):
92
+ val_labels.pop()
93
+ else:
94
+ break
95
+
96
+ while True:
97
+ if len(test_labels) > len(test_encodings):
98
+ test_labels.pop()
99
+ else:
100
+ break
101
+
102
+ class dataset(Dataset):
103
+ def __init__(self, encodings, labels):
104
+ self.encodings = encodings
105
+ self.labels = labels
106
+
107
+ def __getitem__(self, idx):
108
+ item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
109
+ item['labels'] = torch.tensor(self.labels[idx])
110
+ return item
111
+
112
+ def __len__(self):
113
+ return(len(self.labels))
114
+
115
+ train_dataset_list = [[], [], [], [], [], []]
116
+ for i in train_labels:
117
+ for j in range(6):
118
+ train_dataset_list[j].append(i[j])
119
+
120
+ val_dataset_list = [[], [], [], [], [], []]
121
+ for i in val_labels:
122
+ for j in range(6):
123
+ val_dataset_list[j].append(i[j])
124
+
125
+ train_dataset_0 = dataset(train_encodings, train_dataset_list[0])
126
+ train_dataset_1 = dataset(train_encodings, train_dataset_list[1])
127
+ train_dataset_2 = dataset(train_encodings, train_dataset_list[2])
128
+ train_dataset_3 = dataset(train_encodings, train_dataset_list[3])
129
+ train_dataset_4 = dataset(train_encodings, train_dataset_list[4])
130
+ train_dataset_5 = dataset(train_encodings, train_dataset_list[5])
131
+
132
+ val_dataset_0 = dataset(val_encodings, val_dataset_list[0])
133
+ val_dataset_1 = dataset(val_encodings, val_dataset_list[1])
134
+ val_dataset_2 = dataset(val_encodings, val_dataset_list[2])
135
+ val_dataset_3 = dataset(val_encodings, val_dataset_list[3])
136
+ val_dataset_4 = dataset(val_encodings, val_dataset_list[4])
137
+ val_dataset_5 = dataset(val_encodings, val_dataset_list[5])
138
+
139
+ training_args = TrainingArguments(output_dir='./results',
140
+ num_train_epochs=2,
141
+ per_device_train_batch_size=16,
142
+ per_device_eval_batch_size=64,
143
+ warmup_steps=500, learning_rate=5e-5,
144
+ weight_decay=.01, logging_dir='./logs',
145
+ logging_steps=10)
146
+
147
+ model = DistilBertForSequenceClassification.from_pretrained(model_name)
148
+
149
+ trainer_0 = Trainer(model=model, args=training_args, train_dataset=train_dataset_0, eval_dataset=val_dataset_0)
150
+ trainer_0.train()
151
+
152
+ trainer_1 = Trainer(model=model, args=training_args, train_dataset=train_dataset_1, eval_dataset=val_dataset_1)
153
+ trainer_1.train()
154
+
155
+ trainer_2 = Trainer(model=model, args=training_args, train_dataset=train_dataset_2, eval_dataset=val_dataset_2)
156
+ trainer_2.train()
157
+
158
+ trainer_3 = Trainer(model=model, args=training_args, train_dataset=train_dataset_3, eval_dataset=val_dataset_3)
159
+ trainer_3.train()
160
+
161
+ trainer_4 = Trainer(model=model, args=training_args, train_dataset=train_dataset_4, eval_dataset=val_dataset_4)
162
+ trainer_4.train()
163
+
164
+ trainer_5 = Trainer(model=model, args=training_args, train_dataset=train_dataset_5, eval_dataset=val_dataset_5)
165
+ trainer_5.train()
166
+
167
+ # train_dataset = dataset(train_encodings, train_labels)
168
+ # val_dataset = dataset(val_encodings, val_labels)
169
+ # test_dataset = dataset(test_encodings, test_labels)
170
+
171
+ # -----------------------------------------------------------------
172
+
173
+ # test_dataset_list = [[], [], [], [], [], []]
174
+ # for i in test_labels:
175
+ # for j in range(6):
176
+ # test_dataset_list[j].append(i[j])
177
+
178
+ # -----------------------------------------------------------------
179
+
180
+ # val_dataset = dataset(val_encodings, val_labels)
181
+
182
+ # test_dataset_0 = dataset(test_encodings, test_dataset_list[0])
183
+ # test_dataset_1 = dataset(test_encodings, test_dataset_list[1])
184
+ # test_dataset_2 = dataset(test_encodings, test_dataset_list[2])
185
+ # test_dataset_3 = dataset(test_encodings, test_dataset_list[3])
186
+ # test_dataset_4 = dataset(test_encodings, test_dataset_list[4])
187
+ # test_dataset_5 = dataset(test_encodings, test_dataset_list[5])
188
+
189
+ # -----------------------------------------------------------------
190
+
191
+ # device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
192
+
193
+ # model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
194
+ # model.to(device)
195
+ # model.train()
196
+
197
+ # train_loader = DataLoader(train_dataset_0, batch_size=16, shuffle=True)
198
+
199
+ # optim = AdamW(model.parameters(), lr=5e-5)
200
+
201
+ # num_train_epochs = 2
202
+ # for epoch in range(num_train_epochs):
203
+ # for batch in train_loader:
204
+ # optim.zero_grad()
205
+ # input_ids = batch['input_ids'].to(device)
206
+ # attention_mask = batch['attention_mask'].to(device)
207
+ # labels = batch['labels'].to(device)
208
+
209
+ # outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
210
+
211
+ # loss = outputs[0]
212
+ # loss.backward()
213
+ # optim.step()
214
+
215
+ # model.eval()