Jeffrey Rathgeber Jr commited on
Commit
756468c
·
unverified ·
1 Parent(s): 79d9725

test while loop

Browse files
Files changed (1) hide show
  1. app.py +66 -70
app.py CHANGED
@@ -10,7 +10,71 @@ textIn = st.text_input("Input Text Here:", "I really like the color of your car!
10
 
11
  option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'TextBlob', 'MILESTONE 3: FINE-TUNED'))
12
 
13
- st.write('You selected:', option)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
 
16
  #------------------------------------------------------------------------
@@ -38,72 +102,4 @@ st.write('You selected:', option)
38
  # tokenizer = AutoTokenizer.from_pretrained(save_directory)
39
  # model = AutoModelForSequenceClassification.from_pretrained(save_directory)
40
 
41
- #------------------------------------------------------------------------
42
-
43
- if option == 'Pipeline':
44
-
45
- model_name = "distilbert-base-uncased-finetuned-sst-2-english"
46
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
47
- tokenizer = AutoTokenizer.from_pretrained(model_name)
48
- classifier = pipeline(task="sentiment-analysis", model=model, tokenizer=tokenizer)
49
-
50
- # pipeline
51
- preds = classifier(textIn)
52
- preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
53
- st.write('According to Pipeline, input text is ', preds[0]['label'], ' with a confidence of ', preds[0]['score'])
54
-
55
- if option == 'TextBlob':
56
- # textblob
57
- polarity = TextBlob(textIn).sentiment.polarity
58
- subjectivity = TextBlob(textIn).sentiment.subjectivity
59
- sentiment = ''
60
- if polarity < 0:
61
- sentiment = 'Negative'
62
- elif polarity == 0:
63
- sentiment = 'Neutral'
64
- else:
65
- sentiment = 'Positive'
66
-
67
- st.write('According to TextBlob, input text is ', sentiment, ' and a subjectivity score (from 0 being objective to 1 being subjective) of ', subjectivity)
68
-
69
-
70
- if option == 'MILESTONE 3: FINE-TUNED':
71
-
72
- st.write('TESTING1')
73
-
74
- # model_name_0 = "Rathgeberj/milestone3_0"
75
- # model_0 = AutoModelForSequenceClassification.from_pretrained(model_name_0)
76
- # tokenizer_0 = AutoTokenizer.from_pretrained(model_name_0)
77
- # classifier_0 = pipeline(task="sentiment-analysis", model=model_0, tokenizer=tokenizer_0)
78
-
79
- # model_name_1 = "Rathgeberj/milestone3_1"
80
- # model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1)
81
- # tokenizer_1 = AutoTokenizer.from_pretrained(model_name_1)
82
- # classifier_1 = pipeline(task="sentiment-analysis", model=model_1, tokenizer=tokenizer_1)
83
-
84
- # model_name_2 = "Rathgeberj/milestone3_2"
85
- # model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2)
86
- # tokenizer_2 = AutoTokenizer.from_pretrained(model_name_2)
87
- # classifier_2 = pipeline(task="sentiment-analysis", model=model_2, tokenizer=tokenizer_2)
88
-
89
- # model_name_3 = "Rathgeberj/milestone3_3"
90
- # model_3 = AutoModelForSequenceClassification.from_pretrained(model_name_3)
91
- # tokenizer_3 = AutoTokenizer.from_pretrained(model_name_3)
92
- # classifier_3 = pipeline(task="sentiment-analysis", model=model_3, tokenizer=tokenizer_3)
93
-
94
- # model_name_4 = "Rathgeberj/milestone3_4"
95
- # model_4 = AutoModelForSequenceClassification.from_pretrained(model_name_4)
96
- # tokenizer_4 = AutoTokenizer.from_pretrained(model_name_4)
97
- # classifier_4 = pipeline(task="sentiment-analysis", model=model_4, tokenizer=tokenizer_4)
98
-
99
- # model_name_5 = "Rathgeberj/milestone3_5"
100
- # model_5 = AutoModelForSequenceClassification.from_pretrained(model_name_5)
101
- # tokenizer_5 = AutoTokenizer.from_pretrained(model_name_5)
102
- # classifier_5 = pipeline(task="sentiment-analysis", model=model_5, tokenizer=tokenizer_5)
103
-
104
- # models = [model_0, model_1, model_2, model_3, model_4, model_5]
105
- # tokenizers = [tokenizer_0, tokenizer_1, tokenizer_2, tokenizer_3, tokenizer_4, tokenizer_5]
106
- # classifiers = [classifier_0, classifier_1, classifier_2, classifier_3, classifier_4, classifier_5]
107
-
108
-
109
- # st.write('TESTING2')
 
10
 
11
  option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'TextBlob', 'MILESTONE 3: FINE-TUNED'))
12
 
13
+ while True:
14
+ st.write('You selected:', option)
15
+
16
+ if option == 'MILESTONE 3: FINE-TUNED':
17
+
18
+ st.write('TESTING1')
19
+
20
+ # model_name_0 = "Rathgeberj/milestone3_0"
21
+ # model_0 = AutoModelForSequenceClassification.from_pretrained(model_name_0)
22
+ # tokenizer_0 = AutoTokenizer.from_pretrained(model_name_0)
23
+ # classifier_0 = pipeline(task="sentiment-analysis", model=model_0, tokenizer=tokenizer_0)
24
+
25
+ # model_name_1 = "Rathgeberj/milestone3_1"
26
+ # model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1)
27
+ # tokenizer_1 = AutoTokenizer.from_pretrained(model_name_1)
28
+ # classifier_1 = pipeline(task="sentiment-analysis", model=model_1, tokenizer=tokenizer_1)
29
+
30
+ # model_name_2 = "Rathgeberj/milestone3_2"
31
+ # model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2)
32
+ # tokenizer_2 = AutoTokenizer.from_pretrained(model_name_2)
33
+ # classifier_2 = pipeline(task="sentiment-analysis", model=model_2, tokenizer=tokenizer_2)
34
+
35
+ # model_name_3 = "Rathgeberj/milestone3_3"
36
+ # model_3 = AutoModelForSequenceClassification.from_pretrained(model_name_3)
37
+ # tokenizer_3 = AutoTokenizer.from_pretrained(model_name_3)
38
+ # classifier_3 = pipeline(task="sentiment-analysis", model=model_3, tokenizer=tokenizer_3)
39
+
40
+ # model_name_4 = "Rathgeberj/milestone3_4"
41
+ # model_4 = AutoModelForSequenceClassification.from_pretrained(model_name_4)
42
+ # tokenizer_4 = AutoTokenizer.from_pretrained(model_name_4)
43
+ # classifier_4 = pipeline(task="sentiment-analysis", model=model_4, tokenizer=tokenizer_4)
44
+
45
+ # model_name_5 = "Rathgeberj/milestone3_5"
46
+ # model_5 = AutoModelForSequenceClassification.from_pretrained(model_name_5)
47
+ # tokenizer_5 = AutoTokenizer.from_pretrained(model_name_5)
48
+ # classifier_5 = pipeline(task="sentiment-analysis", model=model_5, tokenizer=tokenizer_5)
49
+
50
+ # models = [model_0, model_1, model_2, model_3, model_4, model_5]
51
+ # tokenizers = [tokenizer_0, tokenizer_1, tokenizer_2, tokenizer_3, tokenizer_4, tokenizer_5]
52
+ # classifiers = [classifier_0, classifier_1, classifier_2, classifier_3, classifier_4, classifier_5]
53
+
54
+
55
+ # st.write('TESTING2')
56
+
57
+ if option == 'Pipeline':
58
+
59
+ model_name = "distilbert-base-uncased-finetuned-sst-2-english"
60
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
61
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
62
+ classifier = pipeline(task="sentiment-analysis", model=model, tokenizer=tokenizer)
63
+ preds = classifier(textIn)
64
+ preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
65
+ st.write('According to Pipeline, input text is ', preds[0]['label'], ' with a confidence of ', preds[0]['score'])
66
+
67
+ if option == 'TextBlob':
68
+ polarity = TextBlob(textIn).sentiment.polarity
69
+ subjectivity = TextBlob(textIn).sentiment.subjectivity
70
+ sentiment = ''
71
+ if polarity < 0:
72
+ sentiment = 'Negative'
73
+ elif polarity == 0:
74
+ sentiment = 'Neutral'
75
+ else:
76
+ sentiment = 'Positive'
77
+ st.write('According to TextBlob, input text is ', sentiment, ' and a subjectivity score (from 0 being objective to 1 being subjective) of ', subjectivity)
78
 
79
 
80
  #------------------------------------------------------------------------
 
102
  # tokenizer = AutoTokenizer.from_pretrained(save_directory)
103
  # model = AutoModelForSequenceClassification.from_pretrained(save_directory)
104
 
105
+ #------------------------------------------------------------------------