Jeffrey Rathgeber Jr
test def
dd57828 unverified
raw
history blame
5.27 kB
import streamlit as st
import tensorflow as tf
from transformers import pipeline
from textblob import TextBlob
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F
textIn = st.text_input("Input Text Here:", "I really like the color of your car!")
# option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'TextBlob', 'MILESTONE 3: FINE-TUNED'))
option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('MILESTONE 3: FINE-TUNED', 'Pipeline'))
st.write('You selected:', option)
if option == 'MILESTONE 3: FINE-TUNED':
polarity = TextBlob(textIn).sentiment.polarity
subjectivity = TextBlob(textIn).sentiment.subjectivity
sentiment = ''
if polarity < 0:
sentiment = 'Negative'
elif polarity == 0:
sentiment = 'Neutral'
else:
sentiment = 'Positive'
st.write('According to TextBlob, input text is ', sentiment, ' and a subjectivity score (from 0 being objective to 1 being subjective) of ', subjectivity)
# model_name_0 = "Rathgeberj/milestone3_0"
# model_0 = AutoModelForSequenceClassification.from_pretrained(model_name_0)
# tokenizer_0 = AutoTokenizer.from_pretrained(model_name_0)
# classifier_0 = pipeline(task="sentiment-analysis", model=model_0, tokenizer=tokenizer_0)
# model_name_1 = "Rathgeberj/milestone3_1"
# model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1)
# tokenizer_1 = AutoTokenizer.from_pretrained(model_name_1)
# classifier_1 = pipeline(task="sentiment-analysis", model=model_1, tokenizer=tokenizer_1)
# model_name_2 = "Rathgeberj/milestone3_2"
# model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2)
# tokenizer_2 = AutoTokenizer.from_pretrained(model_name_2)
# classifier_2 = pipeline(task="sentiment-analysis", model=model_2, tokenizer=tokenizer_2)
# model_name_3 = "Rathgeberj/milestone3_3"
# model_3 = AutoModelForSequenceClassification.from_pretrained(model_name_3)
# tokenizer_3 = AutoTokenizer.from_pretrained(model_name_3)
# classifier_3 = pipeline(task="sentiment-analysis", model=model_3, tokenizer=tokenizer_3)
# model_name_4 = "Rathgeberj/milestone3_4"
# model_4 = AutoModelForSequenceClassification.from_pretrained(model_name_4)
# tokenizer_4 = AutoTokenizer.from_pretrained(model_name_4)
# classifier_4 = pipeline(task="sentiment-analysis", model=model_4, tokenizer=tokenizer_4)
# model_name_5 = "Rathgeberj/milestone3_5"
# model_5 = AutoModelForSequenceClassification.from_pretrained(model_name_5)
# tokenizer_5 = AutoTokenizer.from_pretrained(model_name_5)
# classifier_5 = pipeline(task="sentiment-analysis", model=model_5, tokenizer=tokenizer_5)
# models = [model_0, model_1, model_2, model_3, model_4, model_5]
# tokenizers = [tokenizer_0, tokenizer_1, tokenizer_2, tokenizer_3, tokenizer_4, tokenizer_5]
# classifiers = [classifier_0, classifier_1, classifier_2, classifier_3, classifier_4, classifier_5]
# X_train = [textIn]
# batch = tokenizer(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
# st.write('TESTING2')
if option == 'Pipeline':
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
classifier = pipeline(task="sentiment-analysis", model=model, tokenizer=tokenizer)
preds = classifier(textIn)
preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
st.write('According to Pipeline, input text is ', preds[0]['label'], ' with a confidence of ', preds[0]['score'])
# if option == 'TextBlob':
# polarity = TextBlob(textIn).sentiment.polarity
# subjectivity = TextBlob(textIn).sentiment.subjectivity
# sentiment = ''
# if polarity < 0:
# sentiment = 'Negative'
# elif polarity == 0:
# sentiment = 'Neutral'
# else:
# sentiment = 'Positive'
# st.write('According to TextBlob, input text is ', sentiment, ' and a subjectivity score (from 0 being objective to 1 being subjective) of ', subjectivity)
#------------------------------------------------------------------------
# tokens = tokenizer.tokenize(textIn)
# token_ids = tokenizer.convert_tokens_to_ids(tokens)
# input_ids = tokenizer(textIn)
# X_train = [textIn]
# batch = tokenizer(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt")
# # batch = torch.tensor(batchbatch["input_ids"])
# with torch.no_grad():
# outputs = model(**batch, labels=torch.tensor([1, 0]))
# predictions = F.softmax(outputs.logits, dim=1)
# labels = torch.argmax(predictions, dim=1)
# labels = [model.config.id2label[label_id] for label_id in labels.tolist()]
# # save_directory = "saved"
# tokenizer.save_pretrained(save_directory)
# model.save_pretrained(save_directory)
# tokenizer = AutoTokenizer.from_pretrained(save_directory)
# model = AutoModelForSequenceClassification.from_pretrained(save_directory)
#------------------------------------------------------------------------