Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import tensorflow as tf | |
| from transformers import pipeline | |
| from textblob import TextBlob | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import torch | |
| import torch.nn.functional as F | |
| model_name = "distilbert-base-uncased-finetuned-sst-2-english" | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| classifier = pipeline(task="sentiment-analysis", model=model, tokenizer=tokenizer) | |
| # classifier = pipeline(task="sentiment-analysis") | |
| textIn = st.text_input("Input Text Here:", "I really like the color of your car!") | |
| option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'TextBlob')) | |
| st.write('You selected:', option) | |
| if option == 'Pipeline': | |
| # pipeline | |
| preds = classifier(textIn) | |
| preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] | |
| st.write('According to Pipeline, input text is ', preds[0]['label'], ' with a confidence of ', preds[0]['score']) | |
| if option == 'TextBlob': | |
| # textblob | |
| polarity = TextBlob(textIn).sentiment.polarity | |
| subjectivity = TextBlob(textIn).sentiment.subjectivity | |
| sentiment = '' | |
| if polarity < 0: | |
| sentiment = 'Negative' | |
| elif polarity == 0: | |
| sentiment = 'Neutral' | |
| else: | |
| sentiment = 'Positive' | |
| st.write('According to TextBlob, input text is ', sentiment, ' and a subjectivity score (from 0 being objective to 1 being subjective) of ', subjectivity) | |