File size: 4,149 Bytes
c336617
dede013
 
 
8775ba7
dede013
 
 
9ca0a51
dede013
9ca0a51
 
dede013
b15f8f4
 
dede013
 
b15f8f4
81a4855
b15f8f4
dede013
789804a
dede013
 
 
 
 
 
 
 
 
 
 
 
4c8602a
c5f95fa
dede013
c5f95fa
151b2c7
c5f95fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dede013
 
7223d1f
dede013
f02d1fe
dede013
 
 
 
 
 
 
 
 
 
89b1493
 
 
dede013
89b1493
dede013
 
c5f95fa
63b81a1
c5f95fa
dede013
89b1493
c5f95fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import cv2
import torch
import numpy as np
import streamlit as st
import requests

from PIL import Image
from glob import glob
from insightface.app import FaceAnalysis
import torch.nn.functional as F

# Set the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Global Variables
IMAGE_SHAPE = 640
data_path = 'employees'
webcam_path = 'captured_image.jpg'

# Set Streamlit title
st.title("AIML-Student Attendance System")

# Load employee image paths
image_paths = glob(os.path.join(data_path, '*.jpg'))

# Initialize Face Analysis
app = FaceAnalysis(name="buffalo_l")  # ArcFace model
app.prepare(ctx_id=0 if torch.cuda.is_available() else -1, det_size=(IMAGE_SHAPE, IMAGE_SHAPE))

# Define function to match face embeddings
def prod_function(app, prod_path, webcam_img_pil):
    np_webcam = np.array(webcam_img_pil)
    cv2_webcam = cv2.cvtColor(np_webcam, cv2.COLOR_RGB2BGR)
    
    webcam_faces = app.get(cv2_webcam)
    if not webcam_faces:
        return []
    
    results = []
    for webcam_face in webcam_faces:
        webcam_emb = torch.tensor(webcam_face.embedding, dtype=torch.float32)
        similarity_scores = []
        for path in prod_path:
            img = cv2.imread(path)
            faces = app.get(img, max_num=1)
            if not faces:
                similarity_scores.append(torch.tensor(-1.0))
                continue

            face_emb = torch.tensor(faces[0].embedding, dtype=torch.float32)
            score = F.cosine_similarity(face_emb, webcam_emb, dim=0)
            similarity_scores.append(score)

        similarity_scores = torch.stack(similarity_scores)
        best_match_idx = torch.argmax(similarity_scores)
        best_score = similarity_scores[best_match_idx].item()
        results.append((best_score, best_match_idx))
    
    return results

# Streamlit tabs
about_tab, app_tab = st.tabs(["About the app", "Face Recognition"])

with about_tab:
    st.markdown("""
    # πŸ‘οΈβ€πŸ—¨οΈ AI-Powered Face Recognition Attendance System
    Secure and Accurate Attendance using Vision Transformer + ArcFace Embeddings.
    
    - **Automated, contactless attendance logging**
    - **Uses InsightFace ArcFace embeddings for recognition**
    - **Real-time logging with confidence scoring**
    - **Future Scope: Mask-aware recognition, Group detection, and more**
    """)

with app_tab:
    enable = st.checkbox("Enable camera")
    picture = st.camera_input("Take a picture", disabled=not enable)

    if picture is not None:
        with st.spinner("Analyzing face..."):
            image_pil = Image.open(picture)
            matches = prod_function(app, image_paths, image_pil)

            if not matches:
                st.warning("No face detected in the captured image.")
            else:
                # st.write("Similarity Scores:", prediction_scores)
                recognized = False
                for score, idx in matches:
                    if matched_score >= 0.6:
                        matched_name = os.path.basename(image_paths[match_idx]).split('.')[0]
                        st.success(f"βœ… Welcome: {matched_name}")
                        recognizes=True
                        
                        # Send attendance via POST
                        url = "https://nielit-attendance.glitch.me/adds"
                        data = {'rno': 15, 'sname': matched_name, 'sclass': 7}
                        try:
                            response = requests.post(url, data=data)
                            if response.status_code == 200:
                                st.success(f"Attendance marked successfully for {matched_name}.")
                            else:
                                st.warning(f"Failed to update attendance for {matched_name}.")
                        except Exception as e:
                            st.error(f"Request failed: {e}")
                    else:
                        st.warning("❌ Face match not found or too low confidence.")
                
                if not recognized:
                    st.error("❌ No matches above threshold. Try again.")