phi2-tsai / app.py
RashiAgarwal's picture
Upload app.py
eaa8416
raw
history blame
1.04 kB
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, logging
import gradio as gr
model_name = "microsoft/phi-2"
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True
)
model.config.use_cache = False
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
# Loading adapter (trained LORA weights)
ckpt = '/content/drive/MyDrive/S27/results/checkpoint-500'
model.load_adapter(ckpt)
# adapter_path = 'checkpoint-500'
# model.load_adapter(adapter_path)
def inference(prompt):
pipe = pipeline(task="text-generation",model=model,tokenizer=tokenizer,max_length=200)
result = pipe(f"<s>[INST] {prompt} [/INST]")
return result[0]['generated_text']
with gr.Blocks() as demo:
prompt = gr.Textbox(label="Prompt")
output = gr.Textbox(label="Output Box")
greet_btn = gr.Button("Generate")
greet_btn.click(fn=inference, inputs=prompt, outputs=output, api_name="inference")
demo.launch()