import gradio as gr from diffusers import AutoPipelineForText2Image, EulerAncestralDiscreteScheduler from generate_propmts import generate_prompt from PIL import Image import asyncio import traceback # Load the model with a modified scheduler model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") model.scheduler = EulerAncestralDiscreteScheduler.from_config(model.scheduler.config) model.scheduler.config.prediction_type = "epsilon" # Adjust prediction_type async def generate_image(prompt): try: num_inference_steps = 25 # Or your desired value output = await asyncio.to_thread( model, prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=0.0, output_type="pil" ) if output.images: return output.images[0] else: raise Exception("No images returned by the model.") except Exception as e: print(f"Error generating image: {e}") traceback.print_exc() return None async def inference(sentence_mapping, character_dict, selected_style): images = [] print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}') prompts = [] # Generate prompts for each paragraph for paragraph_number, sentences in sentence_mapping.items(): combined_sentence = " ".join(sentences) prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) prompts.append(prompt) print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") # Use asyncio.gather to run generate_image in parallel tasks = [generate_image(prompt) for prompt in prompts] images = await asyncio.gather(*tasks) # Filter out None values images = [image for image in images if image is not None] return images gradio_interface = gr.Interface( fn=inference, inputs=[ gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") ], outputs=gr.Gallery(label="Generated Images") ) if __name__ == "__main__": gradio_interface.launch()