import os import asyncio import time from generate_prompts import generate_prompt from diffusers import AutoPipelineForText2Image from io import BytesIO import gradio as gr import ray from ray.util import ActorPool ray.init() @ray.remote class ModelActor: def __init__(self): print("Loading the model...") self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") print("Model loaded successfully.") def generate_image(self, prompt, prompt_name): start_time = time.time() process_id = os.getpid() try: print(f"[{process_id}] Generating response for {prompt_name} with prompt: {prompt}") output = self.model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0) print(f"[{process_id}] Output for {prompt_name}: {output}") if isinstance(output.images, list) and len(output.images) > 0: image = output.images[0] buffered = BytesIO() try: image.save(buffered, format="JPEG") image_bytes = buffered.getvalue() end_time = time.time() print(f"[{process_id}] Image bytes length for {prompt_name}: {len(image_bytes)}") print(f"[{process_id}] Time taken for {prompt_name}: {end_time - start_time} seconds") return image_bytes except Exception as e: print(f"[{process_id}] Error saving image for {prompt_name}: {e}") return None else: raise Exception(f"[{process_id}] No images returned by the model for {prompt_name}.") except Exception as e: print(f"[{process_id}] Error generating image for {prompt_name}: {e}") return None def create_actor_pool(num_actors): return ActorPool([ModelActor.remote() for _ in range(num_actors)]) async def queue_api_calls(sentence_mapping, character_dict, selected_style, pool): print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}") prompts = [] for paragraph_number, sentences in sentence_mapping.items(): combined_sentence = " ".join(sentences) print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}") prompt = generate_prompt(combined_sentence, character_dict, selected_style) prompts.append((paragraph_number, prompt)) print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") tasks = [pool.submit(lambda actor, p=prompt, pn=f"Prompt {paragraph_number}": actor.generate_image.remote(p, pn)) for paragraph_number, prompt in prompts] print("Tasks created for image generation.") responses = await asyncio.gather(*[asyncio.to_thread(ray.get, task) for task in tasks]) print("Responses received from image generation tasks.") images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)} print(f"Images generated: {images}") return images def process_prompt(sentence_mapping, character_dict, selected_style): print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}") try: loop = asyncio.get_running_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) print("Event loop created.") pool = create_actor_pool(min(20, max(1, len(sentence_mapping)))) # Create pool with dynamic size cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style, pool)) print(f"process_prompt completed with return value: {cmpt_return}") return cmpt_return gradio_interface = gr.Interface( fn=process_prompt, inputs=[ gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") ], outputs="json" ) if __name__ == "__main__": print("Launching Gradio interface...") gradio_interface.launch() print("Gradio interface launched.")