import os import asyncio from concurrent.futures import ProcessPoolExecutor from io import BytesIO from diffusers import StableDiffusionPipeline import gradio as gr from generate_prompts import generate_prompt # Load the model once at the start print("Loading the Stable Diffusion model...") model = StableDiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo") print("Model loaded successfully.") def generate_image(prompt, prompt_name): try: print(f"Generating image for {prompt_name} with prompt: {prompt}") output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0) print(f"Model output for {prompt_name}: {output}") if output and hasattr(output, 'images') and output.images: print(f"Image generated for {prompt_name}") image = output.images[0] buffered = BytesIO() image.save(buffered, format="JPEG") image_bytes = buffered.getvalue() return image_bytes else: print(f"No images found or generated output is None for {prompt_name}") return None except Exception as e: print(f"An error occurred while generating image for {prompt_name}: {e}") return None async def queue_api_calls(sentence_mapping, character_dict, selected_style): print("Starting to queue API calls...") prompts = [] for paragraph_number, sentences in sentence_mapping.items(): combined_sentence = " ".join(sentences) prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) prompts.append((paragraph_number, prompt)) print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") loop = asyncio.get_running_loop() with ProcessPoolExecutor() as pool: tasks = [ loop.run_in_executor(pool, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts ] responses = await asyncio.gather(*tasks) images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)} print("Finished queuing API calls. Generated images: ", images) return images def process_prompt(sentence_mapping, character_dict, selected_style): print("Processing prompt...") print(f"Sentence Mapping: {sentence_mapping}") print(f"Character Dict: {character_dict}") print(f"Selected Style: {selected_style}") try: loop = asyncio.get_running_loop() print("Using existing event loop.") except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) print("Created new event loop.") cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style)) print("Prompt processing complete. Generated images: ", cmpt_return) return cmpt_return gradio_interface = gr.Interface( fn=process_prompt, inputs=[ gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") ], outputs="json" ).queue(default_concurrency_limit=20) # Set concurrency limit if needed if __name__ == "__main__": print("Launching Gradio interface...") gradio_interface.launch()