import os import asyncio from io import BytesIO from diffusers import AutoPipelineForText2Image import gradio as gr from generate_prompts import generate_prompt # Initialize model model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") async def generate_image(prompt, prompt_name): """ Generates an image based on the provided prompt. Parameters: - prompt (str): The input text for image generation. - prompt_name (str): A name for the prompt, used for logging. Returns: bytes: The generated image data in bytes format, or None if generation fails. """ try: print(f"Generating image for {prompt_name}") output = await model(prompt=prompt, num_inference_steps=50, guidance_scale=7.5) if isinstance(output.images, list) and len(output.images) > 0: image = output.images[0] buffered = BytesIO() image.save(buffered, format="JPEG") image_bytes = buffered.getvalue() return image_bytes else: return None except Exception as e: print(f"An error occurred while generating image for {prompt_name}: {e}") return None async def queue_api_calls(sentence_mapping, character_dict, selected_style): """ Generates images for all provided prompts in parallel using asyncio. Parameters: - sentence_mapping (dict): Mapping between paragraph numbers and sentences. - character_dict (dict): Dictionary mapping characters to their descriptions. - selected_style (str): Selected illustration style. Returns: dict: A dictionary where keys are paragraph numbers and values are image data in bytes format. """ prompts = [] for paragraph_number, sentences in sentence_mapping.items(): combined_sentence = " ".join(sentences) prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) prompts.append((paragraph_number, prompt)) tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts] responses = await asyncio.gather(*tasks) images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)} return images def process_prompt(sentence_mapping, character_dict, selected_style): """ Processes the provided prompts and generates images. Parameters: - sentence_mapping (dict): Mapping between paragraph numbers and sentences. - character_dict (dict): Dictionary mapping characters to their descriptions. - selected_style (str): Selected illustration style. Returns: dict: A dictionary where keys are paragraph numbers and values are image data in bytes format. """ try: loop = asyncio.get_running_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style)) return cmpt_return gradio_interface = gr.Interface( fn=process_prompt, inputs=[gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")], outputs="json" ).queue(default_concurrency_limit=20) # Set concurrency limit if needed if __name__ == "__main__": gradio_interface.launch()